പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

2x^{2}-12x+16=\left(5-x\right)\left(4-x\right)
x-4 കൊണ്ട് 2x-4 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
2x^{2}-12x+16=20-9x+x^{2}
4-x കൊണ്ട് 5-x ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
2x^{2}-12x+16-20=-9x+x^{2}
ഇരുവശങ്ങളിൽ നിന്നും 20 കുറയ്ക്കുക.
2x^{2}-12x-4=-9x+x^{2}
-4 നേടാൻ 16 എന്നതിൽ നിന്ന് 20 കുറയ്ക്കുക.
2x^{2}-12x-4+9x=x^{2}
9x ഇരു വശങ്ങളിലും ചേർക്കുക.
2x^{2}-3x-4=x^{2}
-3x നേടാൻ -12x, 9x എന്നിവ യോജിപ്പിക്കുക.
2x^{2}-3x-4-x^{2}=0
ഇരുവശങ്ങളിൽ നിന്നും x^{2} കുറയ്ക്കുക.
x^{2}-3x-4=0
x^{2} നേടാൻ 2x^{2}, -x^{2} എന്നിവ യോജിപ്പിക്കുക.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-4\right)}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി -3 എന്നതും c എന്നതിനായി -4 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-4\right)}}{2}
-3 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-3\right)±\sqrt{9+16}}{2}
-4, -4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-3\right)±\sqrt{25}}{2}
9, 16 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-3\right)±5}{2}
25 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{3±5}{2}
-3 എന്നതിന്‍റെ വിപരീതം 3 ആണ്.
x=\frac{8}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{3±5}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 3, 5 എന്നതിൽ ചേർക്കുക.
x=4
2 കൊണ്ട് 8 എന്നതിനെ ഹരിക്കുക.
x=-\frac{2}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{3±5}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 3 എന്നതിൽ നിന്ന് 5 വ്യവകലനം ചെയ്യുക.
x=-1
2 കൊണ്ട് -2 എന്നതിനെ ഹരിക്കുക.
x=4 x=-1
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
2x^{2}-12x+16=\left(5-x\right)\left(4-x\right)
x-4 കൊണ്ട് 2x-4 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
2x^{2}-12x+16=20-9x+x^{2}
4-x കൊണ്ട് 5-x ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
2x^{2}-12x+16+9x=20+x^{2}
9x ഇരു വശങ്ങളിലും ചേർക്കുക.
2x^{2}-3x+16=20+x^{2}
-3x നേടാൻ -12x, 9x എന്നിവ യോജിപ്പിക്കുക.
2x^{2}-3x+16-x^{2}=20
ഇരുവശങ്ങളിൽ നിന്നും x^{2} കുറയ്ക്കുക.
x^{2}-3x+16=20
x^{2} നേടാൻ 2x^{2}, -x^{2} എന്നിവ യോജിപ്പിക്കുക.
x^{2}-3x=20-16
ഇരുവശങ്ങളിൽ നിന്നും 16 കുറയ്ക്കുക.
x^{2}-3x=4
4 നേടാൻ 20 എന്നതിൽ നിന്ന് 16 കുറയ്ക്കുക.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=4+\left(-\frac{3}{2}\right)^{2}
-\frac{3}{2} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -3-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{3}{2} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-3x+\frac{9}{4}=4+\frac{9}{4}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{3}{2} സ്ക്വയർ ചെയ്യുക.
x^{2}-3x+\frac{9}{4}=\frac{25}{4}
4, \frac{9}{4} എന്നതിൽ ചേർക്കുക.
\left(x-\frac{3}{2}\right)^{2}=\frac{25}{4}
x^{2}-3x+\frac{9}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{3}{2}=\frac{5}{2} x-\frac{3}{2}=-\frac{5}{2}
ലഘൂകരിക്കുക.
x=4 x=-1
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{3}{2} ചേർക്കുക.