പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

2x^{2}-x-3=3
x+1 കൊണ്ട് 2x-3 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
2x^{2}-x-3-3=0
ഇരുവശങ്ങളിൽ നിന്നും 3 കുറയ്ക്കുക.
2x^{2}-x-6=0
-6 നേടാൻ -3 എന്നതിൽ നിന്ന് 3 കുറയ്ക്കുക.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-6\right)}}{2\times 2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 2 എന്നതും b എന്നതിനായി -1 എന്നതും c എന്നതിനായി -6 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-6\right)}}{2\times 2}
-4, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2\times 2}
-8, -6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-1\right)±\sqrt{49}}{2\times 2}
1, 48 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-1\right)±7}{2\times 2}
49 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{1±7}{2\times 2}
-1 എന്നതിന്‍റെ വിപരീതം 1 ആണ്.
x=\frac{1±7}{4}
2, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{8}{4}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{1±7}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 1, 7 എന്നതിൽ ചേർക്കുക.
x=2
4 കൊണ്ട് 8 എന്നതിനെ ഹരിക്കുക.
x=-\frac{6}{4}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{1±7}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 1 എന്നതിൽ നിന്ന് 7 വ്യവകലനം ചെയ്യുക.
x=-\frac{3}{2}
2 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-6}{4} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x=2 x=-\frac{3}{2}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
2x^{2}-x-3=3
x+1 കൊണ്ട് 2x-3 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
2x^{2}-x=3+3
3 ഇരു വശങ്ങളിലും ചേർക്കുക.
2x^{2}-x=6
6 ലഭ്യമാക്കാൻ 3, 3 എന്നിവ ചേർക്കുക.
\frac{2x^{2}-x}{2}=\frac{6}{2}
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
x^{2}-\frac{1}{2}x=\frac{6}{2}
2 കൊണ്ട് ഹരിക്കുന്നത്, 2 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}-\frac{1}{2}x=3
2 കൊണ്ട് 6 എന്നതിനെ ഹരിക്കുക.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=3+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{4} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -\frac{1}{2}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{1}{4} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{1}{2}x+\frac{1}{16}=3+\frac{1}{16}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{1}{4} സ്ക്വയർ ചെയ്യുക.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{49}{16}
3, \frac{1}{16} എന്നതിൽ ചേർക്കുക.
\left(x-\frac{1}{4}\right)^{2}=\frac{49}{16}
x^{2}-\frac{1}{2}x+\frac{1}{16} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{1}{4}=\frac{7}{4} x-\frac{1}{4}=-\frac{7}{4}
ലഘൂകരിക്കുക.
x=2 x=-\frac{3}{2}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{1}{4} ചേർക്കുക.