പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

4x^{2}+16x+16-5x\left(7-3x\right)\left(7+3x\right)-\left(3x-2\right)^{2}-40x^{2}=-205
\left(2x+4\right)^{2} വികസിപ്പിക്കാൻ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} എന്ന ബൈനോമിയല്‍ സിദ്ധാന്തം ഉപയോഗിക്കുക.
4x^{2}+16x+16-5x\left(7-3x\right)\left(7+3x\right)-\left(9x^{2}-12x+4\right)-40x^{2}=-205
\left(3x-2\right)^{2} വികസിപ്പിക്കാൻ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} എന്ന ബൈനോമിയല്‍ സിദ്ധാന്തം ഉപയോഗിക്കുക.
4x^{2}+16x+16-5x\left(7-3x\right)\left(7+3x\right)-9x^{2}+12x-4-40x^{2}=-205
9x^{2}-12x+4 എന്നതിന്‍റെ വിപരീതം കണ്ടെത്താൻ, ഓരോ പദത്തിന്‍റെയും വിപരീതം കണ്ടെത്തുക.
4x^{2}+16x+16-5x\left(7-3x\right)\left(7+3x\right)-49x^{2}+12x-4=-205
-49x^{2} നേടാൻ -9x^{2}, -40x^{2} എന്നിവ യോജിപ്പിക്കുക.
4x^{2}+16x+16-5x\left(7-3x\right)\left(7+3x\right)-49x^{2}+12x-4+205=0
205 ഇരു വശങ്ങളിലും ചേർക്കുക.
4x^{2}+16x+16-5x\left(7-3x\right)\left(7+3x\right)-49x^{2}+12x+201=0
201 ലഭ്യമാക്കാൻ -4, 205 എന്നിവ ചേർക്കുക.
4x^{2}+16x+16+\left(-35x+15x^{2}\right)\left(7+3x\right)-49x^{2}+12x+201=0
7-3x കൊണ്ട് -5x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
4x^{2}+16x+16-245x+45x^{3}-49x^{2}+12x+201=0
7+3x കൊണ്ട് -35x+15x^{2} ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
4x^{2}-229x+16+45x^{3}-49x^{2}+12x+201=0
-229x നേടാൻ 16x, -245x എന്നിവ യോജിപ്പിക്കുക.
-45x^{2}-229x+16+45x^{3}+12x+201=0
-45x^{2} നേടാൻ 4x^{2}, -49x^{2} എന്നിവ യോജിപ്പിക്കുക.
-45x^{2}-217x+16+45x^{3}+201=0
-217x നേടാൻ -229x, 12x എന്നിവ യോജിപ്പിക്കുക.
-45x^{2}-217x+217+45x^{3}=0
217 ലഭ്യമാക്കാൻ 16, 201 എന്നിവ ചേർക്കുക.
45x^{3}-45x^{2}-217x+217=0
സമവാക്യം സാധാരണ രൂപത്തിൽ നൽകാൻ അത് പുനഃക്രമീകരിക്കുക. ഉയർന്നതിൽ നിന്നും താഴേക്കുള്ള പവർ ക്രമത്തിൽ നിബന്ധനകൾ അടുക്കുക.
±\frac{217}{45},±\frac{217}{15},±\frac{217}{9},±\frac{217}{5},±\frac{217}{3},±217,±\frac{31}{45},±\frac{31}{15},±\frac{31}{9},±\frac{31}{5},±\frac{31}{3},±31,±\frac{7}{45},±\frac{7}{15},±\frac{7}{9},±\frac{7}{5},±\frac{7}{3},±7,±\frac{1}{45},±\frac{1}{15},±\frac{1}{9},±\frac{1}{5},±\frac{1}{3},±1
പരിമേയ വർഗ്ഗസിദ്ധാന്തം പ്രകാരം, ഒരു ബഹുപദത്തിന്‍റെ എല്ലാ പരിമേയ വർഗ്ഗങ്ങളും \frac{p}{q} എന്ന രൂപത്തിലായിരിക്കും, അതിൽ 217 എന്ന സ്ഥിരാങ്ക പദത്തെ p എന്നതും 45 എന്ന ലീഡിംഗ് ഗുണാങ്കത്തെ q എന്നതും ഹരിക്കുന്നു. എല്ലാ കാൻഡിഡേറ്റുകളും \frac{p}{q} ലിസ്റ്റ് ചെയ്യുക.
x=1
കേവലവില പ്രകാരം ഏറ്റവും ചെറുതിൽ നിന്ന് തുടങ്ങി, എല്ലാ പൂർണ്ണസംഖ്യാ മൂല്യങ്ങളും പരീക്ഷിച്ചുനോക്കുന്നതിലൂടെ അത്തരമൊരു വർഗ്ഗം കണ്ടെത്തുക. പൂർണ്ണസംഖ്യാ വർഗ്ഗങ്ങൾ കണ്ടെത്തിയില്ലെങ്കിൽ, ഭിന്നങ്ങൾ പരീക്ഷിച്ചുനോക്കുക.
45x^{2}-217=0
ഘടക സിദ്ധാന്തം പ്രകാരം, ഓരോ വർഗ്ഗത്തിനുമുള്ള k ബഹുപദത്തിന്‍റെ ഒരു ഘടകമാണ് x-k. 45x^{2}-217 ലഭിക്കാൻ x-1 ഉപയോഗിച്ച് 45x^{3}-45x^{2}-217x+217 വിഭജിക്കുക. ഫലം 0 എന്നതിന് തുല്യമാകുന്നയിടത്ത് സമവാക്യം സോൾവ് ചെയ്യുക.
x=\frac{0±\sqrt{0^{2}-4\times 45\left(-217\right)}}{2\times 45}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ഈ ദ്വിമാന സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. a എന്നതിനായി 45 എന്നതും b എന്നതിനായി 0 എന്നതും c എന്നതിനായി -217 എന്നതും ദ്വിമാന സൂത്രവാക്യത്തിൽ വ്യവകലനം ചെയ്യുക.
x=\frac{0±6\sqrt{1085}}{90}
കണക്കുകൂട്ടലുകൾ നടത്തുക.
x=-\frac{\sqrt{1085}}{15} x=\frac{\sqrt{1085}}{15}
± എന്നതും പ്ലസും ± എന്നത് മൈനസും ആയിരിക്കുമ്പോൾ 45x^{2}-217=0 എന്ന സമവാക്യം സോൾവ് ചെയ്യുക.
x=1 x=-\frac{\sqrt{1085}}{15} x=\frac{\sqrt{1085}}{15}
കണ്ടെത്തിയ എല്ലാ സൊല്യൂഷനുകളും ലിസ്റ്റ് ചെയ്യുക.