പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

2x^{2}-3x-2=7
x-2 കൊണ്ട് 2x+1 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
2x^{2}-3x-2-7=0
ഇരുവശങ്ങളിൽ നിന്നും 7 കുറയ്ക്കുക.
2x^{2}-3x-9=0
-9 നേടാൻ -2 എന്നതിൽ നിന്ന് 7 കുറയ്ക്കുക.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-9\right)}}{2\times 2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 2 എന്നതും b എന്നതിനായി -3 എന്നതും c എന്നതിനായി -9 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-9\right)}}{2\times 2}
-3 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-3\right)±\sqrt{9-8\left(-9\right)}}{2\times 2}
-4, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-3\right)±\sqrt{9+72}}{2\times 2}
-8, -9 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-3\right)±\sqrt{81}}{2\times 2}
9, 72 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-3\right)±9}{2\times 2}
81 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{3±9}{2\times 2}
-3 എന്നതിന്‍റെ വിപരീതം 3 ആണ്.
x=\frac{3±9}{4}
2, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{12}{4}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{3±9}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 3, 9 എന്നതിൽ ചേർക്കുക.
x=3
4 കൊണ്ട് 12 എന്നതിനെ ഹരിക്കുക.
x=-\frac{6}{4}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{3±9}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 3 എന്നതിൽ നിന്ന് 9 വ്യവകലനം ചെയ്യുക.
x=-\frac{3}{2}
2 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-6}{4} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x=3 x=-\frac{3}{2}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
2x^{2}-3x-2=7
x-2 കൊണ്ട് 2x+1 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
2x^{2}-3x=7+2
2 ഇരു വശങ്ങളിലും ചേർക്കുക.
2x^{2}-3x=9
9 ലഭ്യമാക്കാൻ 7, 2 എന്നിവ ചേർക്കുക.
\frac{2x^{2}-3x}{2}=\frac{9}{2}
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
x^{2}-\frac{3}{2}x=\frac{9}{2}
2 കൊണ്ട് ഹരിക്കുന്നത്, 2 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=\frac{9}{2}+\left(-\frac{3}{4}\right)^{2}
-\frac{3}{4} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -\frac{3}{2}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{3}{4} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{9}{2}+\frac{9}{16}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{3}{4} സ്ക്വയർ ചെയ്യുക.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{81}{16}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{9}{2} എന്നത് \frac{9}{16} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x-\frac{3}{4}\right)^{2}=\frac{81}{16}
x^{2}-\frac{3}{2}x+\frac{9}{16} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{81}{16}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{3}{4}=\frac{9}{4} x-\frac{3}{4}=-\frac{9}{4}
ലഘൂകരിക്കുക.
x=3 x=-\frac{3}{2}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{3}{4} ചേർക്കുക.