പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

4x^{2}+4x+1=3-x
\left(2x+1\right)^{2} വികസിപ്പിക്കാൻ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} എന്ന ബൈനോമിയല്‍ സിദ്ധാന്തം ഉപയോഗിക്കുക.
4x^{2}+4x+1-3=-x
ഇരുവശങ്ങളിൽ നിന്നും 3 കുറയ്ക്കുക.
4x^{2}+4x-2=-x
-2 നേടാൻ 1 എന്നതിൽ നിന്ന് 3 കുറയ്ക്കുക.
4x^{2}+4x-2+x=0
x ഇരു വശങ്ങളിലും ചേർക്കുക.
4x^{2}+5x-2=0
5x നേടാൻ 4x, x എന്നിവ യോജിപ്പിക്കുക.
x=\frac{-5±\sqrt{5^{2}-4\times 4\left(-2\right)}}{2\times 4}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 4 എന്നതും b എന്നതിനായി 5 എന്നതും c എന്നതിനായി -2 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-5±\sqrt{25-4\times 4\left(-2\right)}}{2\times 4}
5 സ്ക്വയർ ചെയ്യുക.
x=\frac{-5±\sqrt{25-16\left(-2\right)}}{2\times 4}
-4, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-5±\sqrt{25+32}}{2\times 4}
-16, -2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-5±\sqrt{57}}{2\times 4}
25, 32 എന്നതിൽ ചേർക്കുക.
x=\frac{-5±\sqrt{57}}{8}
2, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{\sqrt{57}-5}{8}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-5±\sqrt{57}}{8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -5, \sqrt{57} എന്നതിൽ ചേർക്കുക.
x=\frac{-\sqrt{57}-5}{8}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-5±\sqrt{57}}{8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -5 എന്നതിൽ നിന്ന് \sqrt{57} വ്യവകലനം ചെയ്യുക.
x=\frac{\sqrt{57}-5}{8} x=\frac{-\sqrt{57}-5}{8}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
4x^{2}+4x+1=3-x
\left(2x+1\right)^{2} വികസിപ്പിക്കാൻ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} എന്ന ബൈനോമിയല്‍ സിദ്ധാന്തം ഉപയോഗിക്കുക.
4x^{2}+4x+1+x=3
x ഇരു വശങ്ങളിലും ചേർക്കുക.
4x^{2}+5x+1=3
5x നേടാൻ 4x, x എന്നിവ യോജിപ്പിക്കുക.
4x^{2}+5x=3-1
ഇരുവശങ്ങളിൽ നിന്നും 1 കുറയ്ക്കുക.
4x^{2}+5x=2
2 നേടാൻ 3 എന്നതിൽ നിന്ന് 1 കുറയ്ക്കുക.
\frac{4x^{2}+5x}{4}=\frac{2}{4}
ഇരുവശങ്ങളെയും 4 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{5}{4}x=\frac{2}{4}
4 കൊണ്ട് ഹരിക്കുന്നത്, 4 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}+\frac{5}{4}x=\frac{1}{2}
2 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{2}{4} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x^{2}+\frac{5}{4}x+\left(\frac{5}{8}\right)^{2}=\frac{1}{2}+\left(\frac{5}{8}\right)^{2}
\frac{5}{8} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ \frac{5}{4}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും \frac{5}{8} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+\frac{5}{4}x+\frac{25}{64}=\frac{1}{2}+\frac{25}{64}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{5}{8} സ്ക്വയർ ചെയ്യുക.
x^{2}+\frac{5}{4}x+\frac{25}{64}=\frac{57}{64}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{1}{2} എന്നത് \frac{25}{64} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x+\frac{5}{8}\right)^{2}=\frac{57}{64}
x^{2}+\frac{5}{4}x+\frac{25}{64} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+\frac{5}{8}\right)^{2}}=\sqrt{\frac{57}{64}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+\frac{5}{8}=\frac{\sqrt{57}}{8} x+\frac{5}{8}=-\frac{\sqrt{57}}{8}
ലഘൂകരിക്കുക.
x=\frac{\sqrt{57}-5}{8} x=\frac{-\sqrt{57}-5}{8}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{5}{8} കുറയ്ക്കുക.