x എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
x=-1+\frac{1}{2}i=-1+0.5i
x=-1-\frac{1}{2}i=-1-0.5i
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
4x^{2}+4x+1+\left(2x+3\right)^{2}=0
\left(2x+1\right)^{2} വികസിപ്പിക്കാൻ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
4x^{2}+4x+1+4x^{2}+12x+9=0
\left(2x+3\right)^{2} വികസിപ്പിക്കാൻ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
8x^{2}+4x+1+12x+9=0
8x^{2} നേടാൻ 4x^{2}, 4x^{2} എന്നിവ യോജിപ്പിക്കുക.
8x^{2}+16x+1+9=0
16x നേടാൻ 4x, 12x എന്നിവ യോജിപ്പിക്കുക.
8x^{2}+16x+10=0
10 ലഭ്യമാക്കാൻ 1, 9 എന്നിവ ചേർക്കുക.
x=\frac{-16±\sqrt{16^{2}-4\times 8\times 10}}{2\times 8}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 8 എന്നതും b എന്നതിനായി 16 എന്നതും c എന്നതിനായി 10 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-16±\sqrt{256-4\times 8\times 10}}{2\times 8}
16 സ്ക്വയർ ചെയ്യുക.
x=\frac{-16±\sqrt{256-32\times 10}}{2\times 8}
-4, 8 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-16±\sqrt{256-320}}{2\times 8}
-32, 10 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-16±\sqrt{-64}}{2\times 8}
256, -320 എന്നതിൽ ചേർക്കുക.
x=\frac{-16±8i}{2\times 8}
-64 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-16±8i}{16}
2, 8 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-16+8i}{16}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{-16±8i}{16} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -16, 8i എന്നതിൽ ചേർക്കുക.
x=-1+\frac{1}{2}i
16 കൊണ്ട് -16+8i എന്നതിനെ ഹരിക്കുക.
x=\frac{-16-8i}{16}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{-16±8i}{16} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -16 എന്നതിൽ നിന്ന് 8i വ്യവകലനം ചെയ്യുക.
x=-1-\frac{1}{2}i
16 കൊണ്ട് -16-8i എന്നതിനെ ഹരിക്കുക.
x=-1+\frac{1}{2}i x=-1-\frac{1}{2}i
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
4x^{2}+4x+1+\left(2x+3\right)^{2}=0
\left(2x+1\right)^{2} വികസിപ്പിക്കാൻ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
4x^{2}+4x+1+4x^{2}+12x+9=0
\left(2x+3\right)^{2} വികസിപ്പിക്കാൻ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
8x^{2}+4x+1+12x+9=0
8x^{2} നേടാൻ 4x^{2}, 4x^{2} എന്നിവ യോജിപ്പിക്കുക.
8x^{2}+16x+1+9=0
16x നേടാൻ 4x, 12x എന്നിവ യോജിപ്പിക്കുക.
8x^{2}+16x+10=0
10 ലഭ്യമാക്കാൻ 1, 9 എന്നിവ ചേർക്കുക.
8x^{2}+16x=-10
ഇരുവശങ്ങളിൽ നിന്നും 10 കുറയ്ക്കുക. പൂജ്യത്തിൽ നിന്ന് കിഴിക്കുന്ന എന്തിനും അതിന്റെ നെഗറ്റീവ് ഫലം ലഭിക്കുന്നു.
\frac{8x^{2}+16x}{8}=-\frac{10}{8}
ഇരുവശങ്ങളെയും 8 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{16}{8}x=-\frac{10}{8}
8 കൊണ്ട് ഹരിക്കുന്നത്, 8 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x^{2}+2x=-\frac{10}{8}
8 കൊണ്ട് 16 എന്നതിനെ ഹരിക്കുക.
x^{2}+2x=-\frac{5}{4}
2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-10}{8} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x^{2}+2x+1^{2}=-\frac{5}{4}+1^{2}
1 നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ 2-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും 1 എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+2x+1=-\frac{5}{4}+1
1 സ്ക്വയർ ചെയ്യുക.
x^{2}+2x+1=-\frac{1}{4}
-\frac{5}{4}, 1 എന്നതിൽ ചേർക്കുക.
\left(x+1\right)^{2}=-\frac{1}{4}
x^{2}+2x+1 ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+1\right)^{2}}=\sqrt{-\frac{1}{4}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+1=\frac{1}{2}i x+1=-\frac{1}{2}i
ലഘൂകരിക്കുക.
x=-1+\frac{1}{2}i x=-1-\frac{1}{2}i
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 1 കുറയ്ക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}