മൂല്യനിർണ്ണയം ചെയ്യുക
11m^{3}-4m^{2}+12m+15
m എന്നതുമായി ബന്ധപ്പെട്ട് ഡിഫറൻഷ്യേറ്റ് ചെയ്യുക
33m^{2}-8m+12
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
11m^{3}+m^{2}+8m+9-5m^{2}+4m+6
11m^{3} നേടാൻ 2m^{3}, 9m^{3} എന്നിവ യോജിപ്പിക്കുക.
11m^{3}-4m^{2}+8m+9+4m+6
-4m^{2} നേടാൻ m^{2}, -5m^{2} എന്നിവ യോജിപ്പിക്കുക.
11m^{3}-4m^{2}+12m+9+6
12m നേടാൻ 8m, 4m എന്നിവ യോജിപ്പിക്കുക.
11m^{3}-4m^{2}+12m+15
15 ലഭ്യമാക്കാൻ 9, 6 എന്നിവ ചേർക്കുക.
\frac{\mathrm{d}}{\mathrm{d}m}(11m^{3}+m^{2}+8m+9-5m^{2}+4m+6)
11m^{3} നേടാൻ 2m^{3}, 9m^{3} എന്നിവ യോജിപ്പിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}m}(11m^{3}-4m^{2}+8m+9+4m+6)
-4m^{2} നേടാൻ m^{2}, -5m^{2} എന്നിവ യോജിപ്പിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}m}(11m^{3}-4m^{2}+12m+9+6)
12m നേടാൻ 8m, 4m എന്നിവ യോജിപ്പിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}m}(11m^{3}-4m^{2}+12m+15)
15 ലഭ്യമാക്കാൻ 9, 6 എന്നിവ ചേർക്കുക.
3\times 11m^{3-1}+2\left(-4\right)m^{2-1}+12m^{1-1}
ഒരു പോളിനോമിലിന്റെ അനുമാനം അതിന്റെ പദങ്ങളുടെ അനുമാനങ്ങളുടെ ആകെ തുകയാണ്. ഒരു സ്ഥിര പദത്തിന്റെ അനുമാനം 0 ആണ്. ax^{n} എന്നതിന്റെ അനുമാനം nax^{n-1} ആണ്.
33m^{3-1}+2\left(-4\right)m^{2-1}+12m^{1-1}
3, 11 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
33m^{2}+2\left(-4\right)m^{2-1}+12m^{1-1}
3 എന്നതിൽ നിന്ന് 1 വ്യവകലനം ചെയ്യുക.
33m^{2}-8m^{2-1}+12m^{1-1}
2, -4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
33m^{2}-8m^{1}+12m^{1-1}
2 എന്നതിൽ നിന്ന് 1 വ്യവകലനം ചെയ്യുക.
33m^{2}-8m^{1}+12m^{0}
1 എന്നതിൽ നിന്ന് 1 വ്യവകലനം ചെയ്യുക.
33m^{2}-8m+12m^{0}
ഏതു പദത്തിനും t, t^{1}=t.
33m^{2}-8m+12\times 1
0, t^{0}=1 ഒഴികെ ഏതു പദത്തിനും t.
33m^{2}-8m+12
ഏതു പദത്തിനും t, t\times 1=t, 1t=t.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}