മൂല്യനിർണ്ണയം ചെയ്യുക
-\frac{b^{3}}{4}+2b^{2}
വികസിപ്പിക്കുക
-\frac{b^{3}}{4}+2b^{2}
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
4\left(a^{2}\right)^{2}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
\left(2a^{2}+b\right)^{2} വികസിപ്പിക്കാൻ \left(p+q\right)^{2}=p^{2}+2pq+q^{2} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
4a^{4}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്റുകൾ ഗുണിക്കുക. 4 നേടാൻ 2, 2 എന്നിവ ഗുണിക്കുക.
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}\left(a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
\left(-2a^{2}\right)^{2} വികസിപ്പിക്കുക.
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്റുകൾ ഗുണിക്കുക. 4 നേടാൻ 2, 2 എന്നിവ ഗുണിക്കുക.
4a^{4}+4a^{2}b+b^{2}-2\times 4a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
2-ന്റെ പവറിലേക്ക് -2 കണക്കാക്കി 4 നേടുക.
4a^{4}+4a^{2}b+b^{2}-8a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
8 നേടാൻ 2, 4 എന്നിവ ഗുണിക്കുക.
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
-4a^{4} നേടാൻ 4a^{4}, -8a^{4} എന്നിവ യോജിപ്പിക്കുക.
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}\right)^{2}b^{2}+\left(2a^{2}-b\right)^{2}
\left(\frac{1}{2}b\right)^{2} വികസിപ്പിക്കുക.
-4a^{4}+4a^{2}b+b^{2}-b\times \frac{1}{4}b^{2}+\left(2a^{2}-b\right)^{2}
2-ന്റെ പവറിലേക്ക് \frac{1}{2} കണക്കാക്കി \frac{1}{4} നേടുക.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+\left(2a^{2}-b\right)^{2}
ഒരേ ബേസിന്റെ പവറുകൾ ഗുണിക്കാൻ, അവയുടെ എക്സ്പോണന്റുകൾ ചേർക്കുക. 3 ലഭ്യമാക്കാൻ 1, 2 എന്നിവ ചേർക്കുക.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4\left(a^{2}\right)^{2}-4a^{2}b+b^{2}
\left(2a^{2}-b\right)^{2} വികസിപ്പിക്കാൻ \left(p-q\right)^{2}=p^{2}-2pq+q^{2} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4a^{4}-4a^{2}b+b^{2}
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്റുകൾ ഗുണിക്കുക. 4 നേടാൻ 2, 2 എന്നിവ ഗുണിക്കുക.
-4a^{4}+4a^{2}b+b^{2}-\frac{1}{4}b^{3}+4a^{4}-4a^{2}b+b^{2}
-\frac{1}{4} നേടാൻ -1, \frac{1}{4} എന്നിവ ഗുണിക്കുക.
4a^{2}b+b^{2}-\frac{1}{4}b^{3}-4a^{2}b+b^{2}
0 നേടാൻ -4a^{4}, 4a^{4} എന്നിവ യോജിപ്പിക്കുക.
b^{2}-\frac{1}{4}b^{3}+b^{2}
0 നേടാൻ 4a^{2}b, -4a^{2}b എന്നിവ യോജിപ്പിക്കുക.
2b^{2}-\frac{1}{4}b^{3}
2b^{2} നേടാൻ b^{2}, b^{2} എന്നിവ യോജിപ്പിക്കുക.
4\left(a^{2}\right)^{2}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
\left(2a^{2}+b\right)^{2} വികസിപ്പിക്കാൻ \left(p+q\right)^{2}=p^{2}+2pq+q^{2} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
4a^{4}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്റുകൾ ഗുണിക്കുക. 4 നേടാൻ 2, 2 എന്നിവ ഗുണിക്കുക.
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}\left(a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
\left(-2a^{2}\right)^{2} വികസിപ്പിക്കുക.
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്റുകൾ ഗുണിക്കുക. 4 നേടാൻ 2, 2 എന്നിവ ഗുണിക്കുക.
4a^{4}+4a^{2}b+b^{2}-2\times 4a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
2-ന്റെ പവറിലേക്ക് -2 കണക്കാക്കി 4 നേടുക.
4a^{4}+4a^{2}b+b^{2}-8a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
8 നേടാൻ 2, 4 എന്നിവ ഗുണിക്കുക.
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
-4a^{4} നേടാൻ 4a^{4}, -8a^{4} എന്നിവ യോജിപ്പിക്കുക.
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}\right)^{2}b^{2}+\left(2a^{2}-b\right)^{2}
\left(\frac{1}{2}b\right)^{2} വികസിപ്പിക്കുക.
-4a^{4}+4a^{2}b+b^{2}-b\times \frac{1}{4}b^{2}+\left(2a^{2}-b\right)^{2}
2-ന്റെ പവറിലേക്ക് \frac{1}{2} കണക്കാക്കി \frac{1}{4} നേടുക.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+\left(2a^{2}-b\right)^{2}
ഒരേ ബേസിന്റെ പവറുകൾ ഗുണിക്കാൻ, അവയുടെ എക്സ്പോണന്റുകൾ ചേർക്കുക. 3 ലഭ്യമാക്കാൻ 1, 2 എന്നിവ ചേർക്കുക.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4\left(a^{2}\right)^{2}-4a^{2}b+b^{2}
\left(2a^{2}-b\right)^{2} വികസിപ്പിക്കാൻ \left(p-q\right)^{2}=p^{2}-2pq+q^{2} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4a^{4}-4a^{2}b+b^{2}
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്റുകൾ ഗുണിക്കുക. 4 നേടാൻ 2, 2 എന്നിവ ഗുണിക്കുക.
-4a^{4}+4a^{2}b+b^{2}-\frac{1}{4}b^{3}+4a^{4}-4a^{2}b+b^{2}
-\frac{1}{4} നേടാൻ -1, \frac{1}{4} എന്നിവ ഗുണിക്കുക.
4a^{2}b+b^{2}-\frac{1}{4}b^{3}-4a^{2}b+b^{2}
0 നേടാൻ -4a^{4}, 4a^{4} എന്നിവ യോജിപ്പിക്കുക.
b^{2}-\frac{1}{4}b^{3}+b^{2}
0 നേടാൻ 4a^{2}b, -4a^{2}b എന്നിവ യോജിപ്പിക്കുക.
2b^{2}-\frac{1}{4}b^{3}
2b^{2} നേടാൻ b^{2}, b^{2} എന്നിവ യോജിപ്പിക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}