x എന്നതിനായി സോൾവ് ചെയ്യുക
x=\frac{2}{5}=0.4
x = \frac{6}{5} = 1\frac{1}{5} = 1.2
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
25x^{2}-40x+16-4=0
\left(-5x+4\right)^{2} വികസിപ്പിക്കാൻ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
25x^{2}-40x+12=0
12 നേടാൻ 16 എന്നതിൽ നിന്ന് 4 കുറയ്ക്കുക.
a+b=-40 ab=25\times 12=300
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം 25x^{2}+ax+bx+12 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,-300 -2,-150 -3,-100 -4,-75 -5,-60 -6,-50 -10,-30 -12,-25 -15,-20
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് രണ്ടും നെഗറ്റീവാണ്. 300 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1-300=-301 -2-150=-152 -3-100=-103 -4-75=-79 -5-60=-65 -6-50=-56 -10-30=-40 -12-25=-37 -15-20=-35
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-30 b=-10
സൊല്യൂഷൻ എന്നത് -40 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(25x^{2}-30x\right)+\left(-10x+12\right)
25x^{2}-40x+12 എന്നത് \left(25x^{2}-30x\right)+\left(-10x+12\right) എന്നായി തിരുത്തിയെഴുതുക.
5x\left(5x-6\right)-2\left(5x-6\right)
ആദ്യ ഗ്രൂപ്പിലെ 5x എന്നതും രണ്ടാമത്തേതിലെ -2 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(5x-6\right)\left(5x-2\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് 5x-6 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=\frac{6}{5} x=\frac{2}{5}
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ 5x-6=0, 5x-2=0 എന്നിവ സോൾവ് ചെയ്യുക.
25x^{2}-40x+16-4=0
\left(-5x+4\right)^{2} വികസിപ്പിക്കാൻ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
25x^{2}-40x+12=0
12 നേടാൻ 16 എന്നതിൽ നിന്ന് 4 കുറയ്ക്കുക.
x=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 25\times 12}}{2\times 25}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 25 എന്നതും b എന്നതിനായി -40 എന്നതും c എന്നതിനായി 12 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-40\right)±\sqrt{1600-4\times 25\times 12}}{2\times 25}
-40 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-40\right)±\sqrt{1600-100\times 12}}{2\times 25}
-4, 25 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-40\right)±\sqrt{1600-1200}}{2\times 25}
-100, 12 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-40\right)±\sqrt{400}}{2\times 25}
1600, -1200 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-40\right)±20}{2\times 25}
400 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{40±20}{2\times 25}
-40 എന്നതിന്റെ വിപരീതം 40 ആണ്.
x=\frac{40±20}{50}
2, 25 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{60}{50}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{40±20}{50} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 40, 20 എന്നതിൽ ചേർക്കുക.
x=\frac{6}{5}
10 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{60}{50} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x=\frac{20}{50}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{40±20}{50} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 40 എന്നതിൽ നിന്ന് 20 വ്യവകലനം ചെയ്യുക.
x=\frac{2}{5}
10 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{20}{50} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x=\frac{6}{5} x=\frac{2}{5}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
25x^{2}-40x+16-4=0
\left(-5x+4\right)^{2} വികസിപ്പിക്കാൻ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
25x^{2}-40x+12=0
12 നേടാൻ 16 എന്നതിൽ നിന്ന് 4 കുറയ്ക്കുക.
25x^{2}-40x=-12
ഇരുവശങ്ങളിൽ നിന്നും 12 കുറയ്ക്കുക. പൂജ്യത്തിൽ നിന്ന് കിഴിക്കുന്ന എന്തിനും അതിന്റെ നെഗറ്റീവ് ഫലം ലഭിക്കുന്നു.
\frac{25x^{2}-40x}{25}=-\frac{12}{25}
ഇരുവശങ്ങളെയും 25 കൊണ്ട് ഹരിക്കുക.
x^{2}+\left(-\frac{40}{25}\right)x=-\frac{12}{25}
25 കൊണ്ട് ഹരിക്കുന്നത്, 25 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x^{2}-\frac{8}{5}x=-\frac{12}{25}
5 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-40}{25} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x^{2}-\frac{8}{5}x+\left(-\frac{4}{5}\right)^{2}=-\frac{12}{25}+\left(-\frac{4}{5}\right)^{2}
-\frac{4}{5} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ -\frac{8}{5}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും -\frac{4}{5} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{8}{5}x+\frac{16}{25}=\frac{-12+16}{25}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{4}{5} സ്ക്വയർ ചെയ്യുക.
x^{2}-\frac{8}{5}x+\frac{16}{25}=\frac{4}{25}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ -\frac{12}{25} എന്നത് \frac{16}{25} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x-\frac{4}{5}\right)^{2}=\frac{4}{25}
x^{2}-\frac{8}{5}x+\frac{16}{25} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{4}{5}\right)^{2}}=\sqrt{\frac{4}{25}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{4}{5}=\frac{2}{5} x-\frac{4}{5}=-\frac{2}{5}
ലഘൂകരിക്കുക.
x=\frac{6}{5} x=\frac{2}{5}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും \frac{4}{5} ചേർക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}