പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image
വികസിപ്പിക്കുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

\left(-2a\right)^{3}+\left(\left(-2a\right)^{8}\right)^{2}-\frac{\left(-3a\right)^{2}\times 2a^{2}\times \left(2a\right)^{4}\left(-3\right)a^{5}}{\left(-2a^{2}\right)^{3}}+2a^{4}
ഒരേ ബേസിന്‍റെ പവറുകൾ ഗുണിക്കാൻ, അവയുടെ എക്സ്പോണന്‍റുകൾ ചേർക്കുക. 8 ലഭ്യമാക്കാൻ 5, 3 എന്നിവ ചേർക്കുക.
\left(-2a\right)^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{2}\times \left(2a\right)^{4}\left(-3\right)a^{5}}{\left(-2a^{2}\right)^{3}}+2a^{4}
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്‍റുകൾ ഗുണിക്കുക. 16 നേടാൻ 8, 2 എന്നിവ ഗുണിക്കുക.
\left(-2a\right)^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
ഒരേ ബേസിന്‍റെ പവറുകൾ ഗുണിക്കാൻ, അവയുടെ എക്സ്പോണന്‍റുകൾ ചേർക്കുക. 7 ലഭ്യമാക്കാൻ 2, 5 എന്നിവ ചേർക്കുക.
\left(-2\right)^{3}a^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
\left(-2a\right)^{3} വികസിപ്പിക്കുക.
-8a^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
3-ന്റെ പവറിലേക്ക് -2 കണക്കാക്കി -8 നേടുക.
-8a^{3}+\left(-2\right)^{16}a^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
\left(-2a\right)^{16} വികസിപ്പിക്കുക.
-8a^{3}+65536a^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
16-ന്റെ പവറിലേക്ക് -2 കണക്കാക്കി 65536 നേടുക.
-8a^{3}+65536a^{16}-\frac{\left(-3\right)^{2}a^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
\left(-3a\right)^{2} വികസിപ്പിക്കുക.
-8a^{3}+65536a^{16}-\frac{9a^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
2-ന്റെ പവറിലേക്ക് -3 കണക്കാക്കി 9 നേടുക.
-8a^{3}+65536a^{16}-\frac{18a^{2}a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
18 നേടാൻ 9, 2 എന്നിവ ഗുണിക്കുക.
-8a^{3}+65536a^{16}-\frac{18a^{9}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
ഒരേ ബേസിന്‍റെ പവറുകൾ ഗുണിക്കാൻ, അവയുടെ എക്സ്പോണന്‍റുകൾ ചേർക്കുക. 9 ലഭ്യമാക്കാൻ 2, 7 എന്നിവ ചേർക്കുക.
-8a^{3}+65536a^{16}-\frac{18a^{9}\times 2^{4}a^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
\left(2a\right)^{4} വികസിപ്പിക്കുക.
-8a^{3}+65536a^{16}-\frac{18a^{9}\times 16a^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
4-ന്റെ പവറിലേക്ക് 2 കണക്കാക്കി 16 നേടുക.
-8a^{3}+65536a^{16}-\frac{288a^{9}a^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
288 നേടാൻ 18, 16 എന്നിവ ഗുണിക്കുക.
-8a^{3}+65536a^{16}-\frac{288a^{13}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
ഒരേ ബേസിന്‍റെ പവറുകൾ ഗുണിക്കാൻ, അവയുടെ എക്സ്പോണന്‍റുകൾ ചേർക്കുക. 13 ലഭ്യമാക്കാൻ 9, 4 എന്നിവ ചേർക്കുക.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{\left(-2a^{2}\right)^{3}}+2a^{4}
-864 നേടാൻ 288, -3 എന്നിവ ഗുണിക്കുക.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{\left(-2\right)^{3}\left(a^{2}\right)^{3}}+2a^{4}
\left(-2a^{2}\right)^{3} വികസിപ്പിക്കുക.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{\left(-2\right)^{3}a^{6}}+2a^{4}
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്‍റുകൾ ഗുണിക്കുക. 6 നേടാൻ 2, 3 എന്നിവ ഗുണിക്കുക.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{-8a^{6}}+2a^{4}
3-ന്റെ പവറിലേക്ക് -2 കണക്കാക്കി -8 നേടുക.
-8a^{3}+65536a^{16}-\frac{-108a^{7}}{-1}+2a^{4}
ന്യൂമറേറ്ററിലും ഭിന്നസംഖ്യാഛേദിയിലും 8a^{6} ഒഴിവാക്കുക.
-8a^{3}+65536a^{16}-108a^{7}+2a^{4}
-1 കൊണ്ട് ഹരിക്കുന്ന എന്തും അതിന്‍റെ വിപരീതമാണ് നൽകുക.
\left(-2a\right)^{3}+\left(\left(-2a\right)^{8}\right)^{2}-\frac{\left(-3a\right)^{2}\times 2a^{2}\times \left(2a\right)^{4}\left(-3\right)a^{5}}{\left(-2a^{2}\right)^{3}}+2a^{4}
ഒരേ ബേസിന്‍റെ പവറുകൾ ഗുണിക്കാൻ, അവയുടെ എക്സ്പോണന്‍റുകൾ ചേർക്കുക. 8 ലഭ്യമാക്കാൻ 5, 3 എന്നിവ ചേർക്കുക.
\left(-2a\right)^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{2}\times \left(2a\right)^{4}\left(-3\right)a^{5}}{\left(-2a^{2}\right)^{3}}+2a^{4}
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്‍റുകൾ ഗുണിക്കുക. 16 നേടാൻ 8, 2 എന്നിവ ഗുണിക്കുക.
\left(-2a\right)^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
ഒരേ ബേസിന്‍റെ പവറുകൾ ഗുണിക്കാൻ, അവയുടെ എക്സ്പോണന്‍റുകൾ ചേർക്കുക. 7 ലഭ്യമാക്കാൻ 2, 5 എന്നിവ ചേർക്കുക.
\left(-2\right)^{3}a^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
\left(-2a\right)^{3} വികസിപ്പിക്കുക.
-8a^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
3-ന്റെ പവറിലേക്ക് -2 കണക്കാക്കി -8 നേടുക.
-8a^{3}+\left(-2\right)^{16}a^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
\left(-2a\right)^{16} വികസിപ്പിക്കുക.
-8a^{3}+65536a^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
16-ന്റെ പവറിലേക്ക് -2 കണക്കാക്കി 65536 നേടുക.
-8a^{3}+65536a^{16}-\frac{\left(-3\right)^{2}a^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
\left(-3a\right)^{2} വികസിപ്പിക്കുക.
-8a^{3}+65536a^{16}-\frac{9a^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
2-ന്റെ പവറിലേക്ക് -3 കണക്കാക്കി 9 നേടുക.
-8a^{3}+65536a^{16}-\frac{18a^{2}a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
18 നേടാൻ 9, 2 എന്നിവ ഗുണിക്കുക.
-8a^{3}+65536a^{16}-\frac{18a^{9}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
ഒരേ ബേസിന്‍റെ പവറുകൾ ഗുണിക്കാൻ, അവയുടെ എക്സ്പോണന്‍റുകൾ ചേർക്കുക. 9 ലഭ്യമാക്കാൻ 2, 7 എന്നിവ ചേർക്കുക.
-8a^{3}+65536a^{16}-\frac{18a^{9}\times 2^{4}a^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
\left(2a\right)^{4} വികസിപ്പിക്കുക.
-8a^{3}+65536a^{16}-\frac{18a^{9}\times 16a^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
4-ന്റെ പവറിലേക്ക് 2 കണക്കാക്കി 16 നേടുക.
-8a^{3}+65536a^{16}-\frac{288a^{9}a^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
288 നേടാൻ 18, 16 എന്നിവ ഗുണിക്കുക.
-8a^{3}+65536a^{16}-\frac{288a^{13}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
ഒരേ ബേസിന്‍റെ പവറുകൾ ഗുണിക്കാൻ, അവയുടെ എക്സ്പോണന്‍റുകൾ ചേർക്കുക. 13 ലഭ്യമാക്കാൻ 9, 4 എന്നിവ ചേർക്കുക.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{\left(-2a^{2}\right)^{3}}+2a^{4}
-864 നേടാൻ 288, -3 എന്നിവ ഗുണിക്കുക.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{\left(-2\right)^{3}\left(a^{2}\right)^{3}}+2a^{4}
\left(-2a^{2}\right)^{3} വികസിപ്പിക്കുക.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{\left(-2\right)^{3}a^{6}}+2a^{4}
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്‍റുകൾ ഗുണിക്കുക. 6 നേടാൻ 2, 3 എന്നിവ ഗുണിക്കുക.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{-8a^{6}}+2a^{4}
3-ന്റെ പവറിലേക്ക് -2 കണക്കാക്കി -8 നേടുക.
-8a^{3}+65536a^{16}-\frac{-108a^{7}}{-1}+2a^{4}
ന്യൂമറേറ്ററിലും ഭിന്നസംഖ്യാഛേദിയിലും 8a^{6} ഒഴിവാക്കുക.
-8a^{3}+65536a^{16}-108a^{7}+2a^{4}
-1 കൊണ്ട് ഹരിക്കുന്ന എന്തും അതിന്‍റെ വിപരീതമാണ് നൽകുക.