മൂല്യനിർണ്ണയം ചെയ്യുക
\sqrt{10}\approx 3.16227766
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\left(\sqrt{2}\right)^{2}+2\sqrt{2}\sqrt{5}+\left(\sqrt{5}\right)^{2}-\left(2+\sqrt{10}\right)^{2}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
\left(\sqrt{2}+\sqrt{5}\right)^{2} വികസിപ്പിക്കാൻ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
2+2\sqrt{2}\sqrt{5}+\left(\sqrt{5}\right)^{2}-\left(2+\sqrt{10}\right)^{2}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
\sqrt{2} എന്നതിന്റെ വർഗ്ഗം 2 ആണ്.
2+2\sqrt{10}+\left(\sqrt{5}\right)^{2}-\left(2+\sqrt{10}\right)^{2}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
\sqrt{2}, \sqrt{5} എന്നിവ ഗുണിക്കാൻ, വർഗ്ഗമൂലത്തിന് കീഴിലുള്ള സംഖ്യകൾ ഗുണിക്കുക.
2+2\sqrt{10}+5-\left(2+\sqrt{10}\right)^{2}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
\sqrt{5} എന്നതിന്റെ വർഗ്ഗം 5 ആണ്.
7+2\sqrt{10}-\left(2+\sqrt{10}\right)^{2}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
7 ലഭ്യമാക്കാൻ 2, 5 എന്നിവ ചേർക്കുക.
7+2\sqrt{10}-\left(4+4\sqrt{10}+\left(\sqrt{10}\right)^{2}\right)+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
\left(2+\sqrt{10}\right)^{2} വികസിപ്പിക്കാൻ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
7+2\sqrt{10}-\left(4+4\sqrt{10}+10\right)+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
\sqrt{10} എന്നതിന്റെ വർഗ്ഗം 10 ആണ്.
7+2\sqrt{10}-\left(14+4\sqrt{10}\right)+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
14 ലഭ്യമാക്കാൻ 4, 10 എന്നിവ ചേർക്കുക.
7+2\sqrt{10}-14-4\sqrt{10}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
14+4\sqrt{10} എന്നതിന്റെ വിപരീതം കണ്ടെത്താൻ, ഓരോ പദത്തിന്റെയും വിപരീതം കണ്ടെത്തുക.
-7+2\sqrt{10}-4\sqrt{10}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
-7 നേടാൻ 7 എന്നതിൽ നിന്ന് 14 കുറയ്ക്കുക.
-7-2\sqrt{10}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
-2\sqrt{10} നേടാൻ 2\sqrt{10}, -4\sqrt{10} എന്നിവ യോജിപ്പിക്കുക.
-7-2\sqrt{10}+3\sqrt{10}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
90=3^{2}\times 10 ഘടകക്രിയ ചെയ്യുക. \sqrt{3^{2}}\sqrt{10} എന്നീ വർഗ്ഗമൂലങ്ങളുടെ ഗുണനഫലമെന്ന നിലയിൽ, \sqrt{3^{2}\times 10} എന്ന ഗുണനഫലത്തിന്റെ വർഗ്ഗമൂലം പുനരാലേഖനം ചെയ്യുക. 3^{2} എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
-7+\sqrt{10}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
\sqrt{10} നേടാൻ -2\sqrt{10}, 3\sqrt{10} എന്നിവ യോജിപ്പിക്കുക.
-7+\sqrt{10}+\left(2\sqrt{2}\right)^{2}-1
\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right) പരിഗണിക്കുക. ഗുണനത്തെ ഈ നിയമം ഉപയോഗിച്ച് വർഗ്ഗങ്ങളുടെ വ്യത്യാസമായി പരിവർത്തനം ചെയ്യാനാകും: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 സ്ക്വയർ ചെയ്യുക.
-7+\sqrt{10}+2^{2}\left(\sqrt{2}\right)^{2}-1
\left(2\sqrt{2}\right)^{2} വികസിപ്പിക്കുക.
-7+\sqrt{10}+4\left(\sqrt{2}\right)^{2}-1
2-ന്റെ പവറിലേക്ക് 2 കണക്കാക്കി 4 നേടുക.
-7+\sqrt{10}+4\times 2-1
\sqrt{2} എന്നതിന്റെ വർഗ്ഗം 2 ആണ്.
-7+\sqrt{10}+8-1
8 നേടാൻ 4, 2 എന്നിവ ഗുണിക്കുക.
-7+\sqrt{10}+7
7 നേടാൻ 8 എന്നതിൽ നിന്ന് 1 കുറയ്ക്കുക.
\sqrt{10}
0 ലഭ്യമാക്കാൻ -7, 7 എന്നിവ ചേർക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}