പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image
x എന്നതുമായി ബന്ധപ്പെട്ട് ഡിഫറൻഷ്യേറ്റ് ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

\left(\frac{x^{-2}y^{2}}{x^{2}}\right)^{-\frac{1}{2}}\times \left(\frac{x^{3}y}{y^{\frac{1}{2}}}\right)^{2}
ന്യൂമറേറ്ററിലും ഭിന്നസംഖ്യാഛേദിയിലും y ഒഴിവാക്കുക.
\left(\frac{y^{2}}{x^{4}}\right)^{-\frac{1}{2}}\times \left(\frac{x^{3}y}{y^{\frac{1}{2}}}\right)^{2}
ഒരേ ബേസിന്‍റെ പവറുകൾ ഹരിക്കാൻ, ഭിന്നസംഖ്യാഛേദിയുടെ എക്സ്‌പോണന്‍റിൽ നിന്നും ന്യൂമറേറ്ററിന്‍റെ എക്സ്‌പോണന്‍റ് കുറയ്‌ക്കുക.
\frac{\left(y^{2}\right)^{-\frac{1}{2}}}{\left(x^{4}\right)^{-\frac{1}{2}}}\times \left(\frac{x^{3}y}{y^{\frac{1}{2}}}\right)^{2}
\frac{y^{2}}{x^{4}} എന്നതിന് പവർ നൽകാൻ, അംശവും ഛേദവും പവറിലേക്ക് ഉയർത്തിയ ശേഷം ഹരിക്കുക.
\frac{\left(y^{2}\right)^{-\frac{1}{2}}}{\left(x^{4}\right)^{-\frac{1}{2}}}\left(\sqrt{y}x^{3}\right)^{2}
ന്യൂമറേറ്ററിലും ഭിന്നസംഖ്യാഛേദിയിലും \sqrt{y} ഒഴിവാക്കുക.
\frac{\left(y^{2}\right)^{-\frac{1}{2}}}{\left(x^{4}\right)^{-\frac{1}{2}}}\left(\sqrt{y}\right)^{2}\left(x^{3}\right)^{2}
\left(\sqrt{y}x^{3}\right)^{2} വികസിപ്പിക്കുക.
\frac{\left(y^{2}\right)^{-\frac{1}{2}}}{\left(x^{4}\right)^{-\frac{1}{2}}}\left(\sqrt{y}\right)^{2}x^{6}
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്‍റുകൾ ഗുണിക്കുക. 6 നേടാൻ 3, 2 എന്നിവ ഗുണിക്കുക.
\frac{\left(y^{2}\right)^{-\frac{1}{2}}}{\left(x^{4}\right)^{-\frac{1}{2}}}yx^{6}
2-ന്റെ പവറിലേക്ക് \sqrt{y} കണക്കാക്കി y നേടുക.
\frac{y^{-1}}{\left(x^{4}\right)^{-\frac{1}{2}}}yx^{6}
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്‍റുകൾ ഗുണിക്കുക. -1 നേടാൻ 2, -\frac{1}{2} എന്നിവ ഗുണിക്കുക.
\frac{y^{-1}}{x^{-2}}yx^{6}
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്‍റുകൾ ഗുണിക്കുക. -2 നേടാൻ 4, -\frac{1}{2} എന്നിവ ഗുണിക്കുക.
\frac{y^{-1}y}{x^{-2}}x^{6}
ഏക അംശമായി \frac{y^{-1}}{x^{-2}}y ആവിഷ്‌ക്കരിക്കുക.
\frac{y^{-1}yx^{6}}{x^{-2}}
ഏക അംശമായി \frac{y^{-1}y}{x^{-2}}x^{6} ആവിഷ്‌ക്കരിക്കുക.
\frac{1}{y}yx^{8}
ഒരേ ബേസിന്‍റെ പവറുകൾ ഹരിക്കാൻ, ന്യൂമറേറ്ററിന്‍റെ എക്സ്‌പോണന്‍റിൽ നിന്നും ഭിന്നസംഖ്യാഛേദിയുടെ എക്സ്‌പോണന്‍റ് കുറയ്‌ക്കുക.
x^{8}
y, y എന്നിവ ഒഴിവാക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(\frac{x^{-2}y^{2}}{x^{2}}\right)^{-\frac{1}{2}}\times \left(\frac{x^{3}y}{y^{\frac{1}{2}}}\right)^{2})
ന്യൂമറേറ്ററിലും ഭിന്നസംഖ്യാഛേദിയിലും y ഒഴിവാക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(\frac{y^{2}}{x^{4}}\right)^{-\frac{1}{2}}\times \left(\frac{x^{3}y}{y^{\frac{1}{2}}}\right)^{2})
ഒരേ ബേസിന്‍റെ പവറുകൾ ഹരിക്കാൻ, ഭിന്നസംഖ്യാഛേദിയുടെ എക്സ്‌പോണന്‍റിൽ നിന്നും ന്യൂമറേറ്ററിന്‍റെ എക്സ്‌പോണന്‍റ് കുറയ്‌ക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(y^{2}\right)^{-\frac{1}{2}}}{\left(x^{4}\right)^{-\frac{1}{2}}}\times \left(\frac{x^{3}y}{y^{\frac{1}{2}}}\right)^{2})
\frac{y^{2}}{x^{4}} എന്നതിന് പവർ നൽകാൻ, അംശവും ഛേദവും പവറിലേക്ക് ഉയർത്തിയ ശേഷം ഹരിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(y^{2}\right)^{-\frac{1}{2}}}{\left(x^{4}\right)^{-\frac{1}{2}}}\left(\sqrt{y}x^{3}\right)^{2})
ന്യൂമറേറ്ററിലും ഭിന്നസംഖ്യാഛേദിയിലും \sqrt{y} ഒഴിവാക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(y^{2}\right)^{-\frac{1}{2}}}{\left(x^{4}\right)^{-\frac{1}{2}}}\left(\sqrt{y}\right)^{2}\left(x^{3}\right)^{2})
\left(\sqrt{y}x^{3}\right)^{2} വികസിപ്പിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(y^{2}\right)^{-\frac{1}{2}}}{\left(x^{4}\right)^{-\frac{1}{2}}}\left(\sqrt{y}\right)^{2}x^{6})
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്‍റുകൾ ഗുണിക്കുക. 6 നേടാൻ 3, 2 എന്നിവ ഗുണിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(y^{2}\right)^{-\frac{1}{2}}}{\left(x^{4}\right)^{-\frac{1}{2}}}yx^{6})
2-ന്റെ പവറിലേക്ക് \sqrt{y} കണക്കാക്കി y നേടുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{y^{-1}}{\left(x^{4}\right)^{-\frac{1}{2}}}yx^{6})
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്‍റുകൾ ഗുണിക്കുക. -1 നേടാൻ 2, -\frac{1}{2} എന്നിവ ഗുണിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{y^{-1}}{x^{-2}}yx^{6})
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്‍റുകൾ ഗുണിക്കുക. -2 നേടാൻ 4, -\frac{1}{2} എന്നിവ ഗുണിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{y^{-1}y}{x^{-2}}x^{6})
ഏക അംശമായി \frac{y^{-1}}{x^{-2}}y ആവിഷ്‌ക്കരിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{y^{-1}yx^{6}}{x^{-2}})
ഏക അംശമായി \frac{y^{-1}y}{x^{-2}}x^{6} ആവിഷ്‌ക്കരിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{y}yx^{8})
ഒരേ ബേസിന്‍റെ പവറുകൾ ഹരിക്കാൻ, ന്യൂമറേറ്ററിന്‍റെ എക്സ്‌പോണന്‍റിൽ നിന്നും ഭിന്നസംഖ്യാഛേദിയുടെ എക്സ്‌പോണന്‍റ് കുറയ്‌ക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{8})
y, y എന്നിവ ഒഴിവാക്കുക.
8x^{8-1}
ax^{n} എന്നതിന്‍റെ അവകലജം nax^{n-1} ആണ്.
8x^{7}
8 എന്നതിൽ നിന്ന് 1 വ്യവകലനം ചെയ്യുക.