മൂല്യനിർണ്ണയം ചെയ്യുക
\frac{22}{9}\approx 2.444444444
ഘടകം
\frac{2 \cdot 11}{3 ^ {2}} = 2\frac{4}{9} = 2.4444444444444446
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\frac{\left(\frac{8}{12}+\frac{3}{12}\right)\times \frac{2}{3}}{\frac{1}{4}}
3, 4 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം 12 ആണ്. \frac{2}{3}, \frac{1}{4} എന്നിവയെ 12 എന്ന ഭിന്നസംഖ്യാഛേദിയുള്ള അംശങ്ങളാക്കി മാറ്റുക.
\frac{\frac{8+3}{12}\times \frac{2}{3}}{\frac{1}{4}}
\frac{8}{12}, \frac{3}{12} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ ചേർത്തുകൊണ്ട് അവയെ ചേർക്കുക.
\frac{\frac{11}{12}\times \frac{2}{3}}{\frac{1}{4}}
11 ലഭ്യമാക്കാൻ 8, 3 എന്നിവ ചേർക്കുക.
\frac{\frac{11\times 2}{12\times 3}}{\frac{1}{4}}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് \frac{11}{12}, \frac{2}{3} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{\frac{22}{36}}{\frac{1}{4}}
\frac{11\times 2}{12\times 3} എന്ന അംശത്തിൽ ഗുണനം നടത്തുക.
\frac{\frac{11}{18}}{\frac{1}{4}}
2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{22}{36} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
\frac{11}{18}\times 4
\frac{1}{4} എന്നതിന്റെ പരസ്പരപൂരകം ഉപയോഗിച്ച് \frac{11}{18} ഗുണിക്കുന്നതിലൂടെ \frac{1}{4} കൊണ്ട് \frac{11}{18} എന്നതിനെ ഹരിക്കുക.
\frac{11\times 4}{18}
ഏക അംശമായി \frac{11}{18}\times 4 ആവിഷ്ക്കരിക്കുക.
\frac{44}{18}
44 നേടാൻ 11, 4 എന്നിവ ഗുണിക്കുക.
\frac{22}{9}
2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{44}{18} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}