മൂല്യനിർണ്ണയം ചെയ്യുക
\frac{1}{2}=0.5
ഘടകം
\frac{1}{2} = 0.5
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\frac{18}{15}-\frac{20}{15}-\left(-\frac{5}{2}+\frac{7}{3}-\frac{1}{6}\right)-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
5, 3 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം 15 ആണ്. \frac{6}{5}, \frac{4}{3} എന്നിവയെ 15 എന്ന ഭിന്നസംഖ്യാഛേദിയുള്ള അംശങ്ങളാക്കി മാറ്റുക.
\frac{18-20}{15}-\left(-\frac{5}{2}+\frac{7}{3}-\frac{1}{6}\right)-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
\frac{18}{15}, \frac{20}{15} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ വ്യവകലനം ചെയ്ത് അവയെ വ്യവകലനം ചെയ്യുക.
-\frac{2}{15}-\left(-\frac{5}{2}+\frac{7}{3}-\frac{1}{6}\right)-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
-2 നേടാൻ 18 എന്നതിൽ നിന്ന് 20 കുറയ്ക്കുക.
-\frac{2}{15}-\left(-\frac{15}{6}+\frac{14}{6}-\frac{1}{6}\right)-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
2, 3 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം 6 ആണ്. -\frac{5}{2}, \frac{7}{3} എന്നിവയെ 6 എന്ന ഭിന്നസംഖ്യാഛേദിയുള്ള അംശങ്ങളാക്കി മാറ്റുക.
-\frac{2}{15}-\left(\frac{-15+14}{6}-\frac{1}{6}\right)-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
-\frac{15}{6}, \frac{14}{6} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ ചേർത്തുകൊണ്ട് അവയെ ചേർക്കുക.
-\frac{2}{15}-\left(-\frac{1}{6}-\frac{1}{6}\right)-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
-1 ലഭ്യമാക്കാൻ -15, 14 എന്നിവ ചേർക്കുക.
-\frac{2}{15}-\frac{-1-1}{6}-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
-\frac{1}{6}, \frac{1}{6} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ വ്യവകലനം ചെയ്ത് അവയെ വ്യവകലനം ചെയ്യുക.
-\frac{2}{15}-\frac{-2}{6}-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
-2 നേടാൻ -1 എന്നതിൽ നിന്ന് 1 കുറയ്ക്കുക.
-\frac{2}{15}-\left(-\frac{1}{3}\right)-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-2}{6} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
-\frac{2}{15}+\frac{1}{3}-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
-\frac{1}{3} എന്നതിന്റെ വിപരീതം \frac{1}{3} ആണ്.
-\frac{2}{15}+\frac{5}{15}-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
15, 3 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം 15 ആണ്. -\frac{2}{15}, \frac{1}{3} എന്നിവയെ 15 എന്ന ഭിന്നസംഖ്യാഛേദിയുള്ള അംശങ്ങളാക്കി മാറ്റുക.
\frac{-2+5}{15}-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
-\frac{2}{15}, \frac{5}{15} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ ചേർത്തുകൊണ്ട് അവയെ ചേർക്കുക.
\frac{3}{15}-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
3 ലഭ്യമാക്കാൻ -2, 5 എന്നിവ ചേർക്കുക.
\frac{1}{5}-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
3 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{3}{15} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
\frac{1-4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
\frac{1}{5}, \frac{4}{5} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ വ്യവകലനം ചെയ്ത് അവയെ വ്യവകലനം ചെയ്യുക.
-\frac{3}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
-3 നേടാൻ 1 എന്നതിൽ നിന്ന് 4 കുറയ്ക്കുക.
-\frac{12}{20}+\frac{15}{20}-\left(-\frac{7}{20}\right)
5, 4 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം 20 ആണ്. -\frac{3}{5}, \frac{3}{4} എന്നിവയെ 20 എന്ന ഭിന്നസംഖ്യാഛേദിയുള്ള അംശങ്ങളാക്കി മാറ്റുക.
\frac{-12+15}{20}-\left(-\frac{7}{20}\right)
-\frac{12}{20}, \frac{15}{20} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ ചേർത്തുകൊണ്ട് അവയെ ചേർക്കുക.
\frac{3}{20}-\left(-\frac{7}{20}\right)
3 ലഭ്യമാക്കാൻ -12, 15 എന്നിവ ചേർക്കുക.
\frac{3}{20}+\frac{7}{20}
-\frac{7}{20} എന്നതിന്റെ വിപരീതം \frac{7}{20} ആണ്.
\frac{3+7}{20}
\frac{3}{20}, \frac{7}{20} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ ചേർത്തുകൊണ്ട് അവയെ ചേർക്കുക.
\frac{10}{20}
10 ലഭ്യമാക്കാൻ 3, 7 എന്നിവ ചേർക്കുക.
\frac{1}{2}
10 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{10}{20} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}