പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
a എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

a^{2}-6a+9=0
\left(a-3\right)^{2} വികസിപ്പിക്കാൻ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} എന്ന ബൈനോമിയല്‍ സിദ്ധാന്തം ഉപയോഗിക്കുക.
a+b=-6 ab=9
സമവാക്യം സോൾവ് ചെയ്യാൻ, a^{2}+\left(a+b\right)a+ab=\left(a+a\right)\left(a+b\right) എന്ന സൂത്രവാക്യം ഉപയോഗിച്ച് a^{2}-6a+9 ഫാക്‌ടർ ചെയ്യുക. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,-9 -3,-3
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് രണ്ടും നെഗറ്റീവാണ്. 9 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1-9=-10 -3-3=-6
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-3 b=-3
സൊല്യൂഷൻ എന്നത് -6 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(a-3\right)\left(a-3\right)
ലഭ്യമാക്കിയ മൂല്യങ്ങൾ ഉപയോഗിച്ച് ഫാക്‌ടർ ചെയ്‌ത \left(a+a\right)\left(a+b\right) എന്ന ഗണനപ്രയോഗം പുനരാലേഖനം ചെയ്യുക.
\left(a-3\right)^{2}
ഒരു ബിനോമിനൽ സ്ക്വയറായി മാറ്റിയെഴുതുക.
a=3
സമവാക്യ സൊല്യൂഷൻ കണ്ടെത്താൻ, a-3=0 സോൾവ് ചെയ്യുക.
a^{2}-6a+9=0
\left(a-3\right)^{2} വികസിപ്പിക്കാൻ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} എന്ന ബൈനോമിയല്‍ സിദ്ധാന്തം ഉപയോഗിക്കുക.
a+b=-6 ab=1\times 9=9
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം a^{2}+aa+ba+9 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,-9 -3,-3
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് രണ്ടും നെഗറ്റീവാണ്. 9 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1-9=-10 -3-3=-6
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-3 b=-3
സൊല്യൂഷൻ എന്നത് -6 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(a^{2}-3a\right)+\left(-3a+9\right)
a^{2}-6a+9 എന്നത് \left(a^{2}-3a\right)+\left(-3a+9\right) എന്നായി തിരുത്തിയെഴുതുക.
a\left(a-3\right)-3\left(a-3\right)
ആദ്യ ഗ്രൂപ്പിലെ a എന്നതും രണ്ടാമത്തേതിലെ -3 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(a-3\right)\left(a-3\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് a-3 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
\left(a-3\right)^{2}
ഒരു ബിനോമിനൽ സ്ക്വയറായി മാറ്റിയെഴുതുക.
a=3
സമവാക്യ സൊല്യൂഷൻ കണ്ടെത്താൻ, a-3=0 സോൾവ് ചെയ്യുക.
a^{2}-6a+9=0
\left(a-3\right)^{2} വികസിപ്പിക്കാൻ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} എന്ന ബൈനോമിയല്‍ സിദ്ധാന്തം ഉപയോഗിക്കുക.
a=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി -6 എന്നതും c എന്നതിനായി 9 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
a=\frac{-\left(-6\right)±\sqrt{36-4\times 9}}{2}
-6 സ്ക്വയർ ചെയ്യുക.
a=\frac{-\left(-6\right)±\sqrt{36-36}}{2}
-4, 9 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
a=\frac{-\left(-6\right)±\sqrt{0}}{2}
36, -36 എന്നതിൽ ചേർക്കുക.
a=-\frac{-6}{2}
0 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
a=\frac{6}{2}
-6 എന്നതിന്‍റെ വിപരീതം 6 ആണ്.
a=3
2 കൊണ്ട് 6 എന്നതിനെ ഹരിക്കുക.
\sqrt{\left(a-3\right)^{2}}=\sqrt{0}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
a-3=0 a-3=0
ലഘൂകരിക്കുക.
a=3 a=3
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 3 ചേർക്കുക.
a=3
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു. പരിഹാരങ്ങൾ ഒന്നുതന്നെയാണ്.