പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
z എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

z^{2}-\frac{1}{40000000000}z+\frac{1}{62500000000}=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
z=\frac{-\left(-\frac{1}{40000000000}\right)±\sqrt{\left(-\frac{1}{40000000000}\right)^{2}-4\times \frac{1}{62500000000}}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി -\frac{1}{40000000000} എന്നതും c എന്നതിനായി \frac{1}{62500000000} എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
z=\frac{-\left(-\frac{1}{40000000000}\right)±\sqrt{\frac{1}{1600000000000000000000}-4\times \frac{1}{62500000000}}}{2}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{1}{40000000000} സ്ക്വയർ ചെയ്യുക.
z=\frac{-\left(-\frac{1}{40000000000}\right)±\sqrt{\frac{1}{1600000000000000000000}-\frac{1}{15625000000}}}{2}
-4, \frac{1}{62500000000} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
z=\frac{-\left(-\frac{1}{40000000000}\right)±\sqrt{-\frac{102399999999}{1600000000000000000000}}}{2}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{1}{1600000000000000000000} എന്നത് -\frac{1}{15625000000} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
z=\frac{-\left(-\frac{1}{40000000000}\right)±\frac{\sqrt{102399999999}i}{40000000000}}{2}
-\frac{102399999999}{1600000000000000000000} എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
z=\frac{\frac{1}{40000000000}±\frac{\sqrt{102399999999}i}{40000000000}}{2}
-\frac{1}{40000000000} എന്നതിന്‍റെ വിപരീതം \frac{1}{40000000000} ആണ്.
z=\frac{1+\sqrt{102399999999}i}{2\times 40000000000}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, z=\frac{\frac{1}{40000000000}±\frac{\sqrt{102399999999}i}{40000000000}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. \frac{1}{40000000000}, \frac{i\sqrt{102399999999}}{40000000000} എന്നതിൽ ചേർക്കുക.
z=\frac{1+\sqrt{102399999999}i}{80000000000}
2 കൊണ്ട് \frac{1+i\sqrt{102399999999}}{40000000000} എന്നതിനെ ഹരിക്കുക.
z=\frac{-\sqrt{102399999999}i+1}{2\times 40000000000}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, z=\frac{\frac{1}{40000000000}±\frac{\sqrt{102399999999}i}{40000000000}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. \frac{1}{40000000000} എന്നതിൽ നിന്ന് \frac{i\sqrt{102399999999}}{40000000000} വ്യവകലനം ചെയ്യുക.
z=\frac{-\sqrt{102399999999}i+1}{80000000000}
2 കൊണ്ട് \frac{1-i\sqrt{102399999999}}{40000000000} എന്നതിനെ ഹരിക്കുക.
z=\frac{1+\sqrt{102399999999}i}{80000000000} z=\frac{-\sqrt{102399999999}i+1}{80000000000}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
z^{2}-\frac{1}{40000000000}z+\frac{1}{62500000000}=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
z^{2}-\frac{1}{40000000000}z+\frac{1}{62500000000}-\frac{1}{62500000000}=-\frac{1}{62500000000}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{1}{62500000000} കുറയ്ക്കുക.
z^{2}-\frac{1}{40000000000}z=-\frac{1}{62500000000}
അതിൽ നിന്നുതന്നെ \frac{1}{62500000000} കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
z^{2}-\frac{1}{40000000000}z+\left(-\frac{1}{80000000000}\right)^{2}=-\frac{1}{62500000000}+\left(-\frac{1}{80000000000}\right)^{2}
-\frac{1}{80000000000} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -\frac{1}{40000000000}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{1}{80000000000} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
z^{2}-\frac{1}{40000000000}z+\frac{1}{6400000000000000000000}=-\frac{1}{62500000000}+\frac{1}{6400000000000000000000}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{1}{80000000000} സ്ക്വയർ ചെയ്യുക.
z^{2}-\frac{1}{40000000000}z+\frac{1}{6400000000000000000000}=-\frac{102399999999}{6400000000000000000000}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ -\frac{1}{62500000000} എന്നത് \frac{1}{6400000000000000000000} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(z-\frac{1}{80000000000}\right)^{2}=-\frac{102399999999}{6400000000000000000000}
z^{2}-\frac{1}{40000000000}z+\frac{1}{6400000000000000000000} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(z-\frac{1}{80000000000}\right)^{2}}=\sqrt{-\frac{102399999999}{6400000000000000000000}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
z-\frac{1}{80000000000}=\frac{\sqrt{102399999999}i}{80000000000} z-\frac{1}{80000000000}=-\frac{\sqrt{102399999999}i}{80000000000}
ലഘൂകരിക്കുക.
z=\frac{1+\sqrt{102399999999}i}{80000000000} z=\frac{-\sqrt{102399999999}i+1}{80000000000}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{1}{80000000000} ചേർക്കുക.