y എന്നതിനായി സോൾവ് ചെയ്യുക
y=3+4i
y=3-4i
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
y^{2}-6y+25=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
y=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 25}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി -6 എന്നതും c എന്നതിനായി 25 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
y=\frac{-\left(-6\right)±\sqrt{36-4\times 25}}{2}
-6 സ്ക്വയർ ചെയ്യുക.
y=\frac{-\left(-6\right)±\sqrt{36-100}}{2}
-4, 25 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
y=\frac{-\left(-6\right)±\sqrt{-64}}{2}
36, -100 എന്നതിൽ ചേർക്കുക.
y=\frac{-\left(-6\right)±8i}{2}
-64 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
y=\frac{6±8i}{2}
-6 എന്നതിന്റെ വിപരീതം 6 ആണ്.
y=\frac{6+8i}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, y=\frac{6±8i}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 6, 8i എന്നതിൽ ചേർക്കുക.
y=3+4i
2 കൊണ്ട് 6+8i എന്നതിനെ ഹരിക്കുക.
y=\frac{6-8i}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, y=\frac{6±8i}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 6 എന്നതിൽ നിന്ന് 8i വ്യവകലനം ചെയ്യുക.
y=3-4i
2 കൊണ്ട് 6-8i എന്നതിനെ ഹരിക്കുക.
y=3+4i y=3-4i
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
y^{2}-6y+25=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
y^{2}-6y+25-25=-25
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 25 കുറയ്ക്കുക.
y^{2}-6y=-25
അതിൽ നിന്നുതന്നെ 25 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
y^{2}-6y+\left(-3\right)^{2}=-25+\left(-3\right)^{2}
-3 നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ -6-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും -3 എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
y^{2}-6y+9=-25+9
-3 സ്ക്വയർ ചെയ്യുക.
y^{2}-6y+9=-16
-25, 9 എന്നതിൽ ചേർക്കുക.
\left(y-3\right)^{2}=-16
y^{2}-6y+9 ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(y-3\right)^{2}}=\sqrt{-16}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
y-3=4i y-3=-4i
ലഘൂകരിക്കുക.
y=3+4i y=3-4i
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും 3 ചേർക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}