പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
Tick mark Image
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

±13,±1
പരിമേയ വർഗ്ഗസിദ്ധാന്തം പ്രകാരം, ഒരു ബഹുപദത്തിന്‍റെ എല്ലാ പരിമേയ വർഗ്ഗങ്ങളും \frac{p}{q} എന്ന രൂപത്തിലായിരിക്കും, അതിൽ 13 എന്ന സ്ഥിരാങ്ക പദത്തെ p എന്നതും 1 എന്ന ലീഡിംഗ് ഗുണാങ്കത്തെ q എന്നതും ഹരിക്കുന്നു. എല്ലാ കാൻഡിഡേറ്റുകളും \frac{p}{q} ലിസ്റ്റ് ചെയ്യുക.
x=-1
കേവലവില പ്രകാരം ഏറ്റവും ചെറുതിൽ നിന്ന് തുടങ്ങി, എല്ലാ പൂർണ്ണസംഖ്യാ മൂല്യങ്ങളും പരീക്ഷിച്ചുനോക്കുന്നതിലൂടെ അത്തരമൊരു വർഗ്ഗം കണ്ടെത്തുക. പൂർണ്ണസംഖ്യാ വർഗ്ഗങ്ങൾ കണ്ടെത്തിയില്ലെങ്കിൽ, ഭിന്നങ്ങൾ പരീക്ഷിച്ചുനോക്കുക.
x^{2}-6x+13=0
ഘടക സിദ്ധാന്തം പ്രകാരം, ഓരോ വർഗ്ഗത്തിനുമുള്ള k ബഹുപദത്തിന്‍റെ ഒരു ഘടകമാണ് x-k. x^{2}-6x+13 ലഭിക്കാൻ x+1 ഉപയോഗിച്ച് x^{3}-5x^{2}+7x+13 വിഭജിക്കുക. ഫലം 0 എന്നതിന് തുല്യമാകുന്നയിടത്ത് സമവാക്യം സോൾവ് ചെയ്യുക.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 1\times 13}}{2}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ഈ ദ്വിമാന സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. a എന്നതിനായി 1 എന്നതും b എന്നതിനായി -6 എന്നതും c എന്നതിനായി 13 എന്നതും ദ്വിമാന സൂത്രവാക്യത്തിൽ വ്യവകലനം ചെയ്യുക.
x=\frac{6±\sqrt{-16}}{2}
കണക്കുകൂട്ടലുകൾ നടത്തുക.
x=3-2i x=3+2i
± എന്നതും പ്ലസും ± എന്നത് മൈനസും ആയിരിക്കുമ്പോൾ x^{2}-6x+13=0 എന്ന സമവാക്യം സോൾവ് ചെയ്യുക.
x=-1 x=3-2i x=3+2i
കണ്ടെത്തിയ എല്ലാ സൊല്യൂഷനുകളും ലിസ്റ്റ് ചെയ്യുക.
±13,±1
പരിമേയ വർഗ്ഗസിദ്ധാന്തം പ്രകാരം, ഒരു ബഹുപദത്തിന്‍റെ എല്ലാ പരിമേയ വർഗ്ഗങ്ങളും \frac{p}{q} എന്ന രൂപത്തിലായിരിക്കും, അതിൽ 13 എന്ന സ്ഥിരാങ്ക പദത്തെ p എന്നതും 1 എന്ന ലീഡിംഗ് ഗുണാങ്കത്തെ q എന്നതും ഹരിക്കുന്നു. എല്ലാ കാൻഡിഡേറ്റുകളും \frac{p}{q} ലിസ്റ്റ് ചെയ്യുക.
x=-1
കേവലവില പ്രകാരം ഏറ്റവും ചെറുതിൽ നിന്ന് തുടങ്ങി, എല്ലാ പൂർണ്ണസംഖ്യാ മൂല്യങ്ങളും പരീക്ഷിച്ചുനോക്കുന്നതിലൂടെ അത്തരമൊരു വർഗ്ഗം കണ്ടെത്തുക. പൂർണ്ണസംഖ്യാ വർഗ്ഗങ്ങൾ കണ്ടെത്തിയില്ലെങ്കിൽ, ഭിന്നങ്ങൾ പരീക്ഷിച്ചുനോക്കുക.
x^{2}-6x+13=0
ഘടക സിദ്ധാന്തം പ്രകാരം, ഓരോ വർഗ്ഗത്തിനുമുള്ള k ബഹുപദത്തിന്‍റെ ഒരു ഘടകമാണ് x-k. x^{2}-6x+13 ലഭിക്കാൻ x+1 ഉപയോഗിച്ച് x^{3}-5x^{2}+7x+13 വിഭജിക്കുക. ഫലം 0 എന്നതിന് തുല്യമാകുന്നയിടത്ത് സമവാക്യം സോൾവ് ചെയ്യുക.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 1\times 13}}{2}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ഈ ദ്വിമാന സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. a എന്നതിനായി 1 എന്നതും b എന്നതിനായി -6 എന്നതും c എന്നതിനായി 13 എന്നതും ദ്വിമാന സൂത്രവാക്യത്തിൽ വ്യവകലനം ചെയ്യുക.
x=\frac{6±\sqrt{-16}}{2}
കണക്കുകൂട്ടലുകൾ നടത്തുക.
x\in \emptyset
ഒരു നെഗറ്റീവ് സംഖ്യയുടെ വർഗ്ഗമൂലം യഥാർത്ഥ ഫീൽഡിൽ നിർവ്വചിച്ചിട്ടില്ലാത്തതിനാൽ, പരിഹാരങ്ങൾ ഒന്നുമില്ല.
x=-1
കണ്ടെത്തിയ എല്ലാ സൊല്യൂഷനുകളും ലിസ്റ്റ് ചെയ്യുക.