പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
ഘടകം
Tick mark Image
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

x^{2}-8x+2=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്‌ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്‍റെ സൊല്യൂഷനുകളായിരിക്കും.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2}}{2}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2}}{2}
-8 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-8\right)±\sqrt{64-8}}{2}
-4, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-8\right)±\sqrt{56}}{2}
64, -8 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-8\right)±2\sqrt{14}}{2}
56 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{8±2\sqrt{14}}{2}
-8 എന്നതിന്‍റെ വിപരീതം 8 ആണ്.
x=\frac{2\sqrt{14}+8}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{8±2\sqrt{14}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 8, 2\sqrt{14} എന്നതിൽ ചേർക്കുക.
x=\sqrt{14}+4
2 കൊണ്ട് 8+2\sqrt{14} എന്നതിനെ ഹരിക്കുക.
x=\frac{8-2\sqrt{14}}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{8±2\sqrt{14}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 8 എന്നതിൽ നിന്ന് 2\sqrt{14} വ്യവകലനം ചെയ്യുക.
x=4-\sqrt{14}
2 കൊണ്ട് 8-2\sqrt{14} എന്നതിനെ ഹരിക്കുക.
x^{2}-8x+2=\left(x-\left(\sqrt{14}+4\right)\right)\left(x-\left(4-\sqrt{14}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. x_{1}-നായി 4+\sqrt{14} എന്നതും, x_{2}-നായി 4-\sqrt{14} എന്നതും പകരം വയ്‌ക്കുക.