പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

x^{2}-30x+225=0
225 ഇരു വശങ്ങളിലും ചേർക്കുക.
a+b=-30 ab=225
സമവാക്യം സോൾവ് ചെയ്യാൻ, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) എന്ന സൂത്രവാക്യം ഉപയോഗിച്ച് x^{2}-30x+225 ഫാക്‌ടർ ചെയ്യുക. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,-225 -3,-75 -5,-45 -9,-25 -15,-15
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് രണ്ടും നെഗറ്റീവാണ്. 225 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1-225=-226 -3-75=-78 -5-45=-50 -9-25=-34 -15-15=-30
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-15 b=-15
സൊല്യൂഷൻ എന്നത് -30 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(x-15\right)\left(x-15\right)
ലഭ്യമാക്കിയ മൂല്യങ്ങൾ ഉപയോഗിച്ച് ഫാക്‌ടർ ചെയ്‌ത \left(x+a\right)\left(x+b\right) എന്ന ഗണനപ്രയോഗം പുനരാലേഖനം ചെയ്യുക.
\left(x-15\right)^{2}
ഒരു ബിനോമിനൽ സ്ക്വയറായി മാറ്റിയെഴുതുക.
x=15
സമവാക്യ സൊല്യൂഷൻ കണ്ടെത്താൻ, x-15=0 സോൾവ് ചെയ്യുക.
x^{2}-30x+225=0
225 ഇരു വശങ്ങളിലും ചേർക്കുക.
a+b=-30 ab=1\times 225=225
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം x^{2}+ax+bx+225 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,-225 -3,-75 -5,-45 -9,-25 -15,-15
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് രണ്ടും നെഗറ്റീവാണ്. 225 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1-225=-226 -3-75=-78 -5-45=-50 -9-25=-34 -15-15=-30
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-15 b=-15
സൊല്യൂഷൻ എന്നത് -30 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(x^{2}-15x\right)+\left(-15x+225\right)
x^{2}-30x+225 എന്നത് \left(x^{2}-15x\right)+\left(-15x+225\right) എന്നായി തിരുത്തിയെഴുതുക.
x\left(x-15\right)-15\left(x-15\right)
ആദ്യ ഗ്രൂപ്പിലെ x എന്നതും രണ്ടാമത്തേതിലെ -15 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(x-15\right)\left(x-15\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് x-15 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
\left(x-15\right)^{2}
ഒരു ബിനോമിനൽ സ്ക്വയറായി മാറ്റിയെഴുതുക.
x=15
സമവാക്യ സൊല്യൂഷൻ കണ്ടെത്താൻ, x-15=0 സോൾവ് ചെയ്യുക.
x^{2}-30x=-225
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x^{2}-30x-\left(-225\right)=-225-\left(-225\right)
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 225 ചേർക്കുക.
x^{2}-30x-\left(-225\right)=0
അതിൽ നിന്നുതന്നെ -225 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
x^{2}-30x+225=0
0 എന്നതിൽ നിന്ന് -225 വ്യവകലനം ചെയ്യുക.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 225}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി -30 എന്നതും c എന്നതിനായി 225 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 225}}{2}
-30 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-30\right)±\sqrt{900-900}}{2}
-4, 225 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-30\right)±\sqrt{0}}{2}
900, -900 എന്നതിൽ ചേർക്കുക.
x=-\frac{-30}{2}
0 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{30}{2}
-30 എന്നതിന്‍റെ വിപരീതം 30 ആണ്.
x=15
2 കൊണ്ട് 30 എന്നതിനെ ഹരിക്കുക.
x^{2}-30x=-225
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
x^{2}-30x+\left(-15\right)^{2}=-225+\left(-15\right)^{2}
-15 നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -30-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -15 എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-30x+225=-225+225
-15 സ്ക്വയർ ചെയ്യുക.
x^{2}-30x+225=0
-225, 225 എന്നതിൽ ചേർക്കുക.
\left(x-15\right)^{2}=0
x^{2}-30x+225 ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-15\right)^{2}}=\sqrt{0}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-15=0 x-15=0
ലഘൂകരിക്കുക.
x=15 x=15
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 15 ചേർക്കുക.
x=15
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു. പരിഹാരങ്ങൾ ഒന്നുതന്നെയാണ്.