x എന്നതിനായി സോൾവ് ചെയ്യുക
x=2\sqrt{21755}-38\approx 256.991525302
x=-2\sqrt{21755}-38\approx -332.991525302
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
x^{2}+76x-85576=0
85576 നേടാൻ 76, 1126 എന്നിവ ഗുണിക്കുക.
x=\frac{-76±\sqrt{76^{2}-4\left(-85576\right)}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി 76 എന്നതും c എന്നതിനായി -85576 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-76±\sqrt{5776-4\left(-85576\right)}}{2}
76 സ്ക്വയർ ചെയ്യുക.
x=\frac{-76±\sqrt{5776+342304}}{2}
-4, -85576 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-76±\sqrt{348080}}{2}
5776, 342304 എന്നതിൽ ചേർക്കുക.
x=\frac{-76±4\sqrt{21755}}{2}
348080 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{4\sqrt{21755}-76}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{-76±4\sqrt{21755}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -76, 4\sqrt{21755} എന്നതിൽ ചേർക്കുക.
x=2\sqrt{21755}-38
2 കൊണ്ട് -76+4\sqrt{21755} എന്നതിനെ ഹരിക്കുക.
x=\frac{-4\sqrt{21755}-76}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{-76±4\sqrt{21755}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -76 എന്നതിൽ നിന്ന് 4\sqrt{21755} വ്യവകലനം ചെയ്യുക.
x=-2\sqrt{21755}-38
2 കൊണ്ട് -76-4\sqrt{21755} എന്നതിനെ ഹരിക്കുക.
x=2\sqrt{21755}-38 x=-2\sqrt{21755}-38
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
x^{2}+76x-85576=0
85576 നേടാൻ 76, 1126 എന്നിവ ഗുണിക്കുക.
x^{2}+76x=85576
85576 ഇരു വശങ്ങളിലും ചേർക്കുക. പൂജ്യത്തോട് കൂട്ടുന്ന എന്തിനും അതുതന്നെ ലഭിക്കുന്നു.
x^{2}+76x+38^{2}=85576+38^{2}
38 നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ 76-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും 38 എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+76x+1444=85576+1444
38 സ്ക്വയർ ചെയ്യുക.
x^{2}+76x+1444=87020
85576, 1444 എന്നതിൽ ചേർക്കുക.
\left(x+38\right)^{2}=87020
x^{2}+76x+1444 ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+38\right)^{2}}=\sqrt{87020}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+38=2\sqrt{21755} x+38=-2\sqrt{21755}
ലഘൂകരിക്കുക.
x=2\sqrt{21755}-38 x=-2\sqrt{21755}-38
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 38 കുറയ്ക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}