പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

x^{2}+63x+17=257
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x^{2}+63x+17-257=257-257
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 257 കുറയ്ക്കുക.
x^{2}+63x+17-257=0
അതിൽ നിന്നുതന്നെ 257 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
x^{2}+63x-240=0
17 എന്നതിൽ നിന്ന് 257 വ്യവകലനം ചെയ്യുക.
x=\frac{-63±\sqrt{63^{2}-4\left(-240\right)}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി 63 എന്നതും c എന്നതിനായി -240 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-63±\sqrt{3969-4\left(-240\right)}}{2}
63 സ്ക്വയർ ചെയ്യുക.
x=\frac{-63±\sqrt{3969+960}}{2}
-4, -240 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-63±\sqrt{4929}}{2}
3969, 960 എന്നതിൽ ചേർക്കുക.
x=\frac{\sqrt{4929}-63}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-63±\sqrt{4929}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -63, \sqrt{4929} എന്നതിൽ ചേർക്കുക.
x=\frac{-\sqrt{4929}-63}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-63±\sqrt{4929}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -63 എന്നതിൽ നിന്ന് \sqrt{4929} വ്യവകലനം ചെയ്യുക.
x=\frac{\sqrt{4929}-63}{2} x=\frac{-\sqrt{4929}-63}{2}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
x^{2}+63x+17=257
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
x^{2}+63x+17-17=257-17
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 17 കുറയ്ക്കുക.
x^{2}+63x=257-17
അതിൽ നിന്നുതന്നെ 17 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
x^{2}+63x=240
257 എന്നതിൽ നിന്ന് 17 വ്യവകലനം ചെയ്യുക.
x^{2}+63x+\left(\frac{63}{2}\right)^{2}=240+\left(\frac{63}{2}\right)^{2}
\frac{63}{2} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ 63-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും \frac{63}{2} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+63x+\frac{3969}{4}=240+\frac{3969}{4}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{63}{2} സ്ക്വയർ ചെയ്യുക.
x^{2}+63x+\frac{3969}{4}=\frac{4929}{4}
240, \frac{3969}{4} എന്നതിൽ ചേർക്കുക.
\left(x+\frac{63}{2}\right)^{2}=\frac{4929}{4}
x^{2}+63x+\frac{3969}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+\frac{63}{2}\right)^{2}}=\sqrt{\frac{4929}{4}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+\frac{63}{2}=\frac{\sqrt{4929}}{2} x+\frac{63}{2}=-\frac{\sqrt{4929}}{2}
ലഘൂകരിക്കുക.
x=\frac{\sqrt{4929}-63}{2} x=\frac{-\sqrt{4929}-63}{2}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{63}{2} കുറയ്ക്കുക.