പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

2x^{2}+4\left(4x-6\right)=8x
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഗുണിക്കുക.
2x^{2}+16x-24=8x
4x-6 കൊണ്ട് 4 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
2x^{2}+16x-24-8x=0
ഇരുവശങ്ങളിൽ നിന്നും 8x കുറയ്ക്കുക.
2x^{2}+8x-24=0
8x നേടാൻ 16x, -8x എന്നിവ യോജിപ്പിക്കുക.
x^{2}+4x-12=0
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
a+b=4 ab=1\left(-12\right)=-12
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം x^{2}+ax+bx-12 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,12 -2,6 -3,4
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ, പോസിറ്റീവ് സംഖ്യയ്‌ക്ക് നെഗറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -12 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1+12=11 -2+6=4 -3+4=1
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-2 b=6
സൊല്യൂഷൻ എന്നത് 4 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(x^{2}-2x\right)+\left(6x-12\right)
x^{2}+4x-12 എന്നത് \left(x^{2}-2x\right)+\left(6x-12\right) എന്നായി തിരുത്തിയെഴുതുക.
x\left(x-2\right)+6\left(x-2\right)
ആദ്യ ഗ്രൂപ്പിലെ x എന്നതും രണ്ടാമത്തേതിലെ 6 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(x-2\right)\left(x+6\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് x-2 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=2 x=-6
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x-2=0, x+6=0 എന്നിവ സോൾവ് ചെയ്യുക.
2x^{2}+4\left(4x-6\right)=8x
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഗുണിക്കുക.
2x^{2}+16x-24=8x
4x-6 കൊണ്ട് 4 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
2x^{2}+16x-24-8x=0
ഇരുവശങ്ങളിൽ നിന്നും 8x കുറയ്ക്കുക.
2x^{2}+8x-24=0
8x നേടാൻ 16x, -8x എന്നിവ യോജിപ്പിക്കുക.
x=\frac{-8±\sqrt{8^{2}-4\times 2\left(-24\right)}}{2\times 2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 2 എന്നതും b എന്നതിനായി 8 എന്നതും c എന്നതിനായി -24 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-8±\sqrt{64-4\times 2\left(-24\right)}}{2\times 2}
8 സ്ക്വയർ ചെയ്യുക.
x=\frac{-8±\sqrt{64-8\left(-24\right)}}{2\times 2}
-4, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-8±\sqrt{64+192}}{2\times 2}
-8, -24 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-8±\sqrt{256}}{2\times 2}
64, 192 എന്നതിൽ ചേർക്കുക.
x=\frac{-8±16}{2\times 2}
256 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-8±16}{4}
2, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{8}{4}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-8±16}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -8, 16 എന്നതിൽ ചേർക്കുക.
x=2
4 കൊണ്ട് 8 എന്നതിനെ ഹരിക്കുക.
x=-\frac{24}{4}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-8±16}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -8 എന്നതിൽ നിന്ന് 16 വ്യവകലനം ചെയ്യുക.
x=-6
4 കൊണ്ട് -24 എന്നതിനെ ഹരിക്കുക.
x=2 x=-6
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
2x^{2}+4\left(4x-6\right)=8x
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഗുണിക്കുക.
2x^{2}+16x-24=8x
4x-6 കൊണ്ട് 4 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
2x^{2}+16x-24-8x=0
ഇരുവശങ്ങളിൽ നിന്നും 8x കുറയ്ക്കുക.
2x^{2}+8x-24=0
8x നേടാൻ 16x, -8x എന്നിവ യോജിപ്പിക്കുക.
2x^{2}+8x=24
24 ഇരു വശങ്ങളിലും ചേർക്കുക. പൂജ്യത്തോട് കൂട്ടുന്ന എന്തിനും അതുതന്നെ ലഭിക്കുന്നു.
\frac{2x^{2}+8x}{2}=\frac{24}{2}
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{8}{2}x=\frac{24}{2}
2 കൊണ്ട് ഹരിക്കുന്നത്, 2 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}+4x=\frac{24}{2}
2 കൊണ്ട് 8 എന്നതിനെ ഹരിക്കുക.
x^{2}+4x=12
2 കൊണ്ട് 24 എന്നതിനെ ഹരിക്കുക.
x^{2}+4x+2^{2}=12+2^{2}
2 നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ 4-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും 2 എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+4x+4=12+4
2 സ്ക്വയർ ചെയ്യുക.
x^{2}+4x+4=16
12, 4 എന്നതിൽ ചേർക്കുക.
\left(x+2\right)^{2}=16
x^{2}+4x+4 ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+2\right)^{2}}=\sqrt{16}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+2=4 x+2=-4
ലഘൂകരിക്കുക.
x=2 x=-6
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 2 കുറയ്ക്കുക.