പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
a എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

a^{2}+2-a=-4
ഇരുവശങ്ങളിൽ നിന്നും a കുറയ്ക്കുക.
a^{2}+2-a+4=0
4 ഇരു വശങ്ങളിലും ചേർക്കുക.
a^{2}+6-a=0
6 ലഭ്യമാക്കാൻ 2, 4 എന്നിവ ചേർക്കുക.
a^{2}-a+6=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
a=\frac{-\left(-1\right)±\sqrt{1-4\times 6}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി -1 എന്നതും c എന്നതിനായി 6 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
a=\frac{-\left(-1\right)±\sqrt{1-24}}{2}
-4, 6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
a=\frac{-\left(-1\right)±\sqrt{-23}}{2}
1, -24 എന്നതിൽ ചേർക്കുക.
a=\frac{-\left(-1\right)±\sqrt{23}i}{2}
-23 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
a=\frac{1±\sqrt{23}i}{2}
-1 എന്നതിന്‍റെ വിപരീതം 1 ആണ്.
a=\frac{1+\sqrt{23}i}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, a=\frac{1±\sqrt{23}i}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 1, i\sqrt{23} എന്നതിൽ ചേർക്കുക.
a=\frac{-\sqrt{23}i+1}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, a=\frac{1±\sqrt{23}i}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 1 എന്നതിൽ നിന്ന് i\sqrt{23} വ്യവകലനം ചെയ്യുക.
a=\frac{1+\sqrt{23}i}{2} a=\frac{-\sqrt{23}i+1}{2}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
a^{2}+2-a=-4
ഇരുവശങ്ങളിൽ നിന്നും a കുറയ്ക്കുക.
a^{2}-a=-4-2
ഇരുവശങ്ങളിൽ നിന്നും 2 കുറയ്ക്കുക.
a^{2}-a=-6
-6 നേടാൻ -4 എന്നതിൽ നിന്ന് 2 കുറയ്ക്കുക.
a^{2}-a+\left(-\frac{1}{2}\right)^{2}=-6+\left(-\frac{1}{2}\right)^{2}
-\frac{1}{2} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -1-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{1}{2} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
a^{2}-a+\frac{1}{4}=-6+\frac{1}{4}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{1}{2} സ്ക്വയർ ചെയ്യുക.
a^{2}-a+\frac{1}{4}=-\frac{23}{4}
-6, \frac{1}{4} എന്നതിൽ ചേർക്കുക.
\left(a-\frac{1}{2}\right)^{2}=-\frac{23}{4}
a^{2}-a+\frac{1}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(a-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{23}{4}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
a-\frac{1}{2}=\frac{\sqrt{23}i}{2} a-\frac{1}{2}=-\frac{\sqrt{23}i}{2}
ലഘൂകരിക്കുക.
a=\frac{1+\sqrt{23}i}{2} a=\frac{-\sqrt{23}i+1}{2}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{1}{2} ചേർക്കുക.