x എന്നതിനായി സോൾവ് ചെയ്യുക
x=1
x=-3
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
x^{2}+2x+1=4
\left(x+1\right)^{2} വികസിപ്പിക്കാൻ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
x^{2}+2x+1-4=0
ഇരുവശങ്ങളിൽ നിന്നും 4 കുറയ്ക്കുക.
x^{2}+2x-3=0
-3 നേടാൻ 1 എന്നതിൽ നിന്ന് 4 കുറയ്ക്കുക.
a+b=2 ab=-3
സമവാക്യം സോൾവ് ചെയ്യാൻ, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) എന്ന സൂത്രവാക്യം ഉപയോഗിച്ച് x^{2}+2x-3 ഫാക്ടർ ചെയ്യുക. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
a=-1 b=3
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ, പോസിറ്റീവ് സംഖ്യയ്ക്ക് നെഗറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. അത്തരം ജോടി മാത്രമാണ് സിസ്റ്റം സൊല്യൂഷൻ.
\left(x-1\right)\left(x+3\right)
ലഭ്യമാക്കിയ മൂല്യങ്ങൾ ഉപയോഗിച്ച് ഫാക്ടർ ചെയ്ത \left(x+a\right)\left(x+b\right) എന്ന ഗണനപ്രയോഗം പുനരാലേഖനം ചെയ്യുക.
x=1 x=-3
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x-1=0, x+3=0 എന്നിവ സോൾവ് ചെയ്യുക.
x^{2}+2x+1=4
\left(x+1\right)^{2} വികസിപ്പിക്കാൻ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
x^{2}+2x+1-4=0
ഇരുവശങ്ങളിൽ നിന്നും 4 കുറയ്ക്കുക.
x^{2}+2x-3=0
-3 നേടാൻ 1 എന്നതിൽ നിന്ന് 4 കുറയ്ക്കുക.
a+b=2 ab=1\left(-3\right)=-3
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം x^{2}+ax+bx-3 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
a=-1 b=3
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ, പോസിറ്റീവ് സംഖ്യയ്ക്ക് നെഗറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. അത്തരം ജോടി മാത്രമാണ് സിസ്റ്റം സൊല്യൂഷൻ.
\left(x^{2}-x\right)+\left(3x-3\right)
x^{2}+2x-3 എന്നത് \left(x^{2}-x\right)+\left(3x-3\right) എന്നായി തിരുത്തിയെഴുതുക.
x\left(x-1\right)+3\left(x-1\right)
ആദ്യ ഗ്രൂപ്പിലെ x എന്നതും രണ്ടാമത്തേതിലെ 3 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(x-1\right)\left(x+3\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് x-1 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=1 x=-3
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x-1=0, x+3=0 എന്നിവ സോൾവ് ചെയ്യുക.
x^{2}+2x+1=4
\left(x+1\right)^{2} വികസിപ്പിക്കാൻ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
x^{2}+2x+1-4=0
ഇരുവശങ്ങളിൽ നിന്നും 4 കുറയ്ക്കുക.
x^{2}+2x-3=0
-3 നേടാൻ 1 എന്നതിൽ നിന്ന് 4 കുറയ്ക്കുക.
x=\frac{-2±\sqrt{2^{2}-4\left(-3\right)}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി 2 എന്നതും c എന്നതിനായി -3 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-2±\sqrt{4-4\left(-3\right)}}{2}
2 സ്ക്വയർ ചെയ്യുക.
x=\frac{-2±\sqrt{4+12}}{2}
-4, -3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-2±\sqrt{16}}{2}
4, 12 എന്നതിൽ ചേർക്കുക.
x=\frac{-2±4}{2}
16 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{2}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{-2±4}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -2, 4 എന്നതിൽ ചേർക്കുക.
x=1
2 കൊണ്ട് 2 എന്നതിനെ ഹരിക്കുക.
x=-\frac{6}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{-2±4}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -2 എന്നതിൽ നിന്ന് 4 വ്യവകലനം ചെയ്യുക.
x=-3
2 കൊണ്ട് -6 എന്നതിനെ ഹരിക്കുക.
x=1 x=-3
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
\sqrt{\left(x+1\right)^{2}}=\sqrt{4}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+1=2 x+1=-2
ലഘൂകരിക്കുക.
x=1 x=-3
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 1 കുറയ്ക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}