x എന്നതിനായി സോൾവ് ചെയ്യുക
x=\frac{\sqrt{330}-6}{49}\approx 0.248283717
x=\frac{-\sqrt{330}-6}{49}\approx -0.493181676
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
7^{2}x^{2}+12x-6=0
\left(7x\right)^{2} വികസിപ്പിക്കുക.
49x^{2}+12x-6=0
2-ന്റെ പവറിലേക്ക് 7 കണക്കാക്കി 49 നേടുക.
x=\frac{-12±\sqrt{12^{2}-4\times 49\left(-6\right)}}{2\times 49}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 49 എന്നതും b എന്നതിനായി 12 എന്നതും c എന്നതിനായി -6 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-12±\sqrt{144-4\times 49\left(-6\right)}}{2\times 49}
12 സ്ക്വയർ ചെയ്യുക.
x=\frac{-12±\sqrt{144-196\left(-6\right)}}{2\times 49}
-4, 49 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-12±\sqrt{144+1176}}{2\times 49}
-196, -6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-12±\sqrt{1320}}{2\times 49}
144, 1176 എന്നതിൽ ചേർക്കുക.
x=\frac{-12±2\sqrt{330}}{2\times 49}
1320 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-12±2\sqrt{330}}{98}
2, 49 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{2\sqrt{330}-12}{98}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{-12±2\sqrt{330}}{98} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -12, 2\sqrt{330} എന്നതിൽ ചേർക്കുക.
x=\frac{\sqrt{330}-6}{49}
98 കൊണ്ട് -12+2\sqrt{330} എന്നതിനെ ഹരിക്കുക.
x=\frac{-2\sqrt{330}-12}{98}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{-12±2\sqrt{330}}{98} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -12 എന്നതിൽ നിന്ന് 2\sqrt{330} വ്യവകലനം ചെയ്യുക.
x=\frac{-\sqrt{330}-6}{49}
98 കൊണ്ട് -12-2\sqrt{330} എന്നതിനെ ഹരിക്കുക.
x=\frac{\sqrt{330}-6}{49} x=\frac{-\sqrt{330}-6}{49}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
7^{2}x^{2}+12x-6=0
\left(7x\right)^{2} വികസിപ്പിക്കുക.
49x^{2}+12x-6=0
2-ന്റെ പവറിലേക്ക് 7 കണക്കാക്കി 49 നേടുക.
49x^{2}+12x=6
6 ഇരു വശങ്ങളിലും ചേർക്കുക. പൂജ്യത്തോട് കൂട്ടുന്ന എന്തിനും അതുതന്നെ ലഭിക്കുന്നു.
\frac{49x^{2}+12x}{49}=\frac{6}{49}
ഇരുവശങ്ങളെയും 49 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{12}{49}x=\frac{6}{49}
49 കൊണ്ട് ഹരിക്കുന്നത്, 49 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x^{2}+\frac{12}{49}x+\left(\frac{6}{49}\right)^{2}=\frac{6}{49}+\left(\frac{6}{49}\right)^{2}
\frac{6}{49} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ \frac{12}{49}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും \frac{6}{49} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+\frac{12}{49}x+\frac{36}{2401}=\frac{6}{49}+\frac{36}{2401}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{6}{49} സ്ക്വയർ ചെയ്യുക.
x^{2}+\frac{12}{49}x+\frac{36}{2401}=\frac{330}{2401}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{6}{49} എന്നത് \frac{36}{2401} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x+\frac{6}{49}\right)^{2}=\frac{330}{2401}
x^{2}+\frac{12}{49}x+\frac{36}{2401} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+\frac{6}{49}\right)^{2}}=\sqrt{\frac{330}{2401}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+\frac{6}{49}=\frac{\sqrt{330}}{49} x+\frac{6}{49}=-\frac{\sqrt{330}}{49}
ലഘൂകരിക്കുക.
x=\frac{\sqrt{330}-6}{49} x=\frac{-\sqrt{330}-6}{49}
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{6}{49} കുറയ്ക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}