x എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
x = -\frac{41}{3} = -13\frac{2}{3} \approx -13.666666667
x=0
x എന്നതിനായി സോൾവ് ചെയ്യുക
x=0
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\left(\sqrt{\left(3x+42\right)x}\right)^{2}=x+0\times 1
3 കൊണ്ട് x+14 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
\left(\sqrt{3x^{2}+42x}\right)^{2}=x+0\times 1
x കൊണ്ട് 3x+42 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x^{2}+42x=x+0\times 1
2-ന്റെ പവറിലേക്ക് \sqrt{3x^{2}+42x} കണക്കാക്കി 3x^{2}+42x നേടുക.
3x^{2}+42x=x+0
0 നേടാൻ 0, 1 എന്നിവ ഗുണിക്കുക.
3x^{2}+42x=x
പൂജ്യത്തോട് കൂട്ടുന്ന എന്തിനും അതുതന്നെ ലഭിക്കുന്നു.
3x^{2}+42x-x=0
ഇരുവശങ്ങളിൽ നിന്നും x കുറയ്ക്കുക.
3x^{2}+41x=0
41x നേടാൻ 42x, -x എന്നിവ യോജിപ്പിക്കുക.
x\left(3x+41\right)=0
x ഘടക ലഘൂകരണം ചെയ്യുക.
x=0 x=-\frac{41}{3}
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x=0, 3x+41=0 എന്നിവ സോൾവ് ചെയ്യുക.
\left(\sqrt{\left(3x+42\right)x}\right)^{2}=x+0\times 1
3 കൊണ്ട് x+14 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
\left(\sqrt{3x^{2}+42x}\right)^{2}=x+0\times 1
x കൊണ്ട് 3x+42 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x^{2}+42x=x+0\times 1
2-ന്റെ പവറിലേക്ക് \sqrt{3x^{2}+42x} കണക്കാക്കി 3x^{2}+42x നേടുക.
3x^{2}+42x=x+0
0 നേടാൻ 0, 1 എന്നിവ ഗുണിക്കുക.
3x^{2}+42x=x
പൂജ്യത്തോട് കൂട്ടുന്ന എന്തിനും അതുതന്നെ ലഭിക്കുന്നു.
3x^{2}+42x-x=0
ഇരുവശങ്ങളിൽ നിന്നും x കുറയ്ക്കുക.
3x^{2}+41x=0
41x നേടാൻ 42x, -x എന്നിവ യോജിപ്പിക്കുക.
x=\frac{-41±\sqrt{41^{2}}}{2\times 3}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 3 എന്നതും b എന്നതിനായി 41 എന്നതും c എന്നതിനായി 0 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-41±41}{2\times 3}
41^{2} എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-41±41}{6}
2, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{0}{6}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{-41±41}{6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -41, 41 എന്നതിൽ ചേർക്കുക.
x=0
6 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
x=-\frac{82}{6}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{-41±41}{6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -41 എന്നതിൽ നിന്ന് 41 വ്യവകലനം ചെയ്യുക.
x=-\frac{41}{3}
2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-82}{6} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x=0 x=-\frac{41}{3}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
\left(\sqrt{\left(3x+42\right)x}\right)^{2}=x+0\times 1
3 കൊണ്ട് x+14 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
\left(\sqrt{3x^{2}+42x}\right)^{2}=x+0\times 1
x കൊണ്ട് 3x+42 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x^{2}+42x=x+0\times 1
2-ന്റെ പവറിലേക്ക് \sqrt{3x^{2}+42x} കണക്കാക്കി 3x^{2}+42x നേടുക.
3x^{2}+42x=x+0
0 നേടാൻ 0, 1 എന്നിവ ഗുണിക്കുക.
3x^{2}+42x=x
പൂജ്യത്തോട് കൂട്ടുന്ന എന്തിനും അതുതന്നെ ലഭിക്കുന്നു.
3x^{2}+42x-x=0
ഇരുവശങ്ങളിൽ നിന്നും x കുറയ്ക്കുക.
3x^{2}+41x=0
41x നേടാൻ 42x, -x എന്നിവ യോജിപ്പിക്കുക.
\frac{3x^{2}+41x}{3}=\frac{0}{3}
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{41}{3}x=\frac{0}{3}
3 കൊണ്ട് ഹരിക്കുന്നത്, 3 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x^{2}+\frac{41}{3}x=0
3 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
x^{2}+\frac{41}{3}x+\left(\frac{41}{6}\right)^{2}=\left(\frac{41}{6}\right)^{2}
\frac{41}{6} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ \frac{41}{3}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും \frac{41}{6} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+\frac{41}{3}x+\frac{1681}{36}=\frac{1681}{36}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{41}{6} സ്ക്വയർ ചെയ്യുക.
\left(x+\frac{41}{6}\right)^{2}=\frac{1681}{36}
x^{2}+\frac{41}{3}x+\frac{1681}{36} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+\frac{41}{6}\right)^{2}}=\sqrt{\frac{1681}{36}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+\frac{41}{6}=\frac{41}{6} x+\frac{41}{6}=-\frac{41}{6}
ലഘൂകരിക്കുക.
x=0 x=-\frac{41}{3}
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{41}{6} കുറയ്ക്കുക.
\left(\sqrt{\left(3x+42\right)x}\right)^{2}=x+0\times 1
3 കൊണ്ട് x+14 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
\left(\sqrt{3x^{2}+42x}\right)^{2}=x+0\times 1
x കൊണ്ട് 3x+42 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x^{2}+42x=x+0\times 1
2-ന്റെ പവറിലേക്ക് \sqrt{3x^{2}+42x} കണക്കാക്കി 3x^{2}+42x നേടുക.
3x^{2}+42x=x+0
0 നേടാൻ 0, 1 എന്നിവ ഗുണിക്കുക.
3x^{2}+42x=x
പൂജ്യത്തോട് കൂട്ടുന്ന എന്തിനും അതുതന്നെ ലഭിക്കുന്നു.
3x^{2}+42x-x=0
ഇരുവശങ്ങളിൽ നിന്നും x കുറയ്ക്കുക.
3x^{2}+41x=0
41x നേടാൻ 42x, -x എന്നിവ യോജിപ്പിക്കുക.
x\left(3x+41\right)=0
x ഘടക ലഘൂകരണം ചെയ്യുക.
x=0 x=-\frac{41}{3}
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x=0, 3x+41=0 എന്നിവ സോൾവ് ചെയ്യുക.
\left(\sqrt{\left(3x+42\right)x}\right)^{2}=x+0\times 1
3 കൊണ്ട് x+14 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
\left(\sqrt{3x^{2}+42x}\right)^{2}=x+0\times 1
x കൊണ്ട് 3x+42 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x^{2}+42x=x+0\times 1
2-ന്റെ പവറിലേക്ക് \sqrt{3x^{2}+42x} കണക്കാക്കി 3x^{2}+42x നേടുക.
3x^{2}+42x=x+0
0 നേടാൻ 0, 1 എന്നിവ ഗുണിക്കുക.
3x^{2}+42x=x
പൂജ്യത്തോട് കൂട്ടുന്ന എന്തിനും അതുതന്നെ ലഭിക്കുന്നു.
3x^{2}+42x-x=0
ഇരുവശങ്ങളിൽ നിന്നും x കുറയ്ക്കുക.
3x^{2}+41x=0
41x നേടാൻ 42x, -x എന്നിവ യോജിപ്പിക്കുക.
x=\frac{-41±\sqrt{41^{2}}}{2\times 3}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 3 എന്നതും b എന്നതിനായി 41 എന്നതും c എന്നതിനായി 0 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-41±41}{2\times 3}
41^{2} എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-41±41}{6}
2, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{0}{6}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{-41±41}{6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -41, 41 എന്നതിൽ ചേർക്കുക.
x=0
6 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
x=-\frac{82}{6}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{-41±41}{6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -41 എന്നതിൽ നിന്ന് 41 വ്യവകലനം ചെയ്യുക.
x=-\frac{41}{3}
2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-82}{6} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x=0 x=-\frac{41}{3}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
\left(\sqrt{\left(3x+42\right)x}\right)^{2}=x+0\times 1
3 കൊണ്ട് x+14 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
\left(\sqrt{3x^{2}+42x}\right)^{2}=x+0\times 1
x കൊണ്ട് 3x+42 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x^{2}+42x=x+0\times 1
2-ന്റെ പവറിലേക്ക് \sqrt{3x^{2}+42x} കണക്കാക്കി 3x^{2}+42x നേടുക.
3x^{2}+42x=x+0
0 നേടാൻ 0, 1 എന്നിവ ഗുണിക്കുക.
3x^{2}+42x=x
പൂജ്യത്തോട് കൂട്ടുന്ന എന്തിനും അതുതന്നെ ലഭിക്കുന്നു.
3x^{2}+42x-x=0
ഇരുവശങ്ങളിൽ നിന്നും x കുറയ്ക്കുക.
3x^{2}+41x=0
41x നേടാൻ 42x, -x എന്നിവ യോജിപ്പിക്കുക.
\frac{3x^{2}+41x}{3}=\frac{0}{3}
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{41}{3}x=\frac{0}{3}
3 കൊണ്ട് ഹരിക്കുന്നത്, 3 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x^{2}+\frac{41}{3}x=0
3 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
x^{2}+\frac{41}{3}x+\left(\frac{41}{6}\right)^{2}=\left(\frac{41}{6}\right)^{2}
\frac{41}{6} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ \frac{41}{3}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും \frac{41}{6} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+\frac{41}{3}x+\frac{1681}{36}=\frac{1681}{36}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{41}{6} സ്ക്വയർ ചെയ്യുക.
\left(x+\frac{41}{6}\right)^{2}=\frac{1681}{36}
x^{2}+\frac{41}{3}x+\frac{1681}{36} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+\frac{41}{6}\right)^{2}}=\sqrt{\frac{1681}{36}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+\frac{41}{6}=\frac{41}{6} x+\frac{41}{6}=-\frac{41}{6}
ലഘൂകരിക്കുക.
x=0 x=-\frac{41}{3}
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{41}{6} കുറയ്ക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}