x എന്നതിനായി സോൾവ് ചെയ്യുക
x=2
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\sqrt{x+2}=2+\sqrt{x-2}
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും -\sqrt{x-2} കുറയ്ക്കുക.
\left(\sqrt{x+2}\right)^{2}=\left(2+\sqrt{x-2}\right)^{2}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും സ്ക്വയർ ചെയ്യുക.
x+2=\left(2+\sqrt{x-2}\right)^{2}
2-ന്റെ പവറിലേക്ക് \sqrt{x+2} കണക്കാക്കി x+2 നേടുക.
x+2=4+4\sqrt{x-2}+\left(\sqrt{x-2}\right)^{2}
\left(2+\sqrt{x-2}\right)^{2} വികസിപ്പിക്കാൻ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
x+2=4+4\sqrt{x-2}+x-2
2-ന്റെ പവറിലേക്ക് \sqrt{x-2} കണക്കാക്കി x-2 നേടുക.
x+2=2+4\sqrt{x-2}+x
2 നേടാൻ 4 എന്നതിൽ നിന്ന് 2 കുറയ്ക്കുക.
x+2-4\sqrt{x-2}=2+x
ഇരുവശങ്ങളിൽ നിന്നും 4\sqrt{x-2} കുറയ്ക്കുക.
x+2-4\sqrt{x-2}-x=2
ഇരുവശങ്ങളിൽ നിന്നും x കുറയ്ക്കുക.
2-4\sqrt{x-2}=2
0 നേടാൻ x, -x എന്നിവ യോജിപ്പിക്കുക.
-4\sqrt{x-2}=2-2
ഇരുവശങ്ങളിൽ നിന്നും 2 കുറയ്ക്കുക.
-4\sqrt{x-2}=0
0 നേടാൻ 2 എന്നതിൽ നിന്ന് 2 കുറയ്ക്കുക.
\sqrt{x-2}=0
ഇരുവശങ്ങളെയും -4 കൊണ്ട് ഹരിക്കുക. പൂജ്യമല്ലാത്ത ഏത് സംഖ്യയെയും പൂജ്യം കൊണ്ട് ഹരിക്കുന്നത് പൂജ്യം നൽകുന്നു.
x-2=0
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും സ്ക്വയർ ചെയ്യുക.
x-2-\left(-2\right)=-\left(-2\right)
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും 2 ചേർക്കുക.
x=-\left(-2\right)
അതിൽ നിന്നുതന്നെ -2 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
x=2
0 എന്നതിൽ നിന്ന് -2 വ്യവകലനം ചെയ്യുക.
\sqrt{2+2}-\sqrt{2-2}=2
\sqrt{x+2}-\sqrt{x-2}=2 എന്ന സമവാക്യത്തിൽ x എന്നതിനായി 2 സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
2=2
ലഘൂകരിക്കുക. മൂല്യം x=2 സമവാക്യം സാധൂകരിക്കുന്നു.
x=2
സമവാക്യം\sqrt{x+2}=\sqrt{x-2}+2-ന് തനത് പരിഹാരം ഉണ്ട്.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}