മൂല്യനിർണ്ണയം ചെയ്യുക
\frac{\sqrt{15}}{4}\approx 0.968245837
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\sqrt{\frac{2}{4}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}}
2, 4 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം 4 ആണ്. \frac{1}{2}, \frac{1}{4} എന്നിവയെ 4 എന്ന ഭിന്നസംഖ്യാഛേദിയുള്ള അംശങ്ങളാക്കി മാറ്റുക.
\sqrt{\frac{2+1}{4}+\frac{1}{8}+\frac{1}{16}}
\frac{2}{4}, \frac{1}{4} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ ചേർത്തുകൊണ്ട് അവയെ ചേർക്കുക.
\sqrt{\frac{3}{4}+\frac{1}{8}+\frac{1}{16}}
3 ലഭ്യമാക്കാൻ 2, 1 എന്നിവ ചേർക്കുക.
\sqrt{\frac{6}{8}+\frac{1}{8}+\frac{1}{16}}
4, 8 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം 8 ആണ്. \frac{3}{4}, \frac{1}{8} എന്നിവയെ 8 എന്ന ഭിന്നസംഖ്യാഛേദിയുള്ള അംശങ്ങളാക്കി മാറ്റുക.
\sqrt{\frac{6+1}{8}+\frac{1}{16}}
\frac{6}{8}, \frac{1}{8} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ ചേർത്തുകൊണ്ട് അവയെ ചേർക്കുക.
\sqrt{\frac{7}{8}+\frac{1}{16}}
7 ലഭ്യമാക്കാൻ 6, 1 എന്നിവ ചേർക്കുക.
\sqrt{\frac{14}{16}+\frac{1}{16}}
8, 16 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം 16 ആണ്. \frac{7}{8}, \frac{1}{16} എന്നിവയെ 16 എന്ന ഭിന്നസംഖ്യാഛേദിയുള്ള അംശങ്ങളാക്കി മാറ്റുക.
\sqrt{\frac{14+1}{16}}
\frac{14}{16}, \frac{1}{16} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ ചേർത്തുകൊണ്ട് അവയെ ചേർക്കുക.
\sqrt{\frac{15}{16}}
15 ലഭ്യമാക്കാൻ 14, 1 എന്നിവ ചേർക്കുക.
\frac{\sqrt{15}}{\sqrt{16}}
\frac{\sqrt{15}}{\sqrt{16}} എന്നീ വർഗ്ഗമൂലങ്ങളുടെ ഹരണമെന്ന നിലയിൽ, \sqrt{\frac{15}{16}} എന്ന ഹരണത്തിന്റെ വർഗ്ഗമൂലം പുനരാലേഖനം ചെയ്യുക.
\frac{\sqrt{15}}{4}
16 എന്നതിന്റെ സ്ക്വയർ റൂട്ട് കണക്കാക്കുക, 4 ലഭിക്കും.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}