പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

\left(\sqrt{21-2x}\right)^{2}=\left(x-3\right)^{2}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളും സ്ക്വയർ ചെയ്യുക.
21-2x=\left(x-3\right)^{2}
2-ന്റെ പവറിലേക്ക് \sqrt{21-2x} കണക്കാക്കി 21-2x നേടുക.
21-2x=x^{2}-6x+9
\left(x-3\right)^{2} വികസിപ്പിക്കാൻ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} എന്ന ബൈനോമിയല്‍ സിദ്ധാന്തം ഉപയോഗിക്കുക.
21-2x-x^{2}=-6x+9
ഇരുവശങ്ങളിൽ നിന്നും x^{2} കുറയ്ക്കുക.
21-2x-x^{2}+6x=9
6x ഇരു വശങ്ങളിലും ചേർക്കുക.
21+4x-x^{2}=9
4x നേടാൻ -2x, 6x എന്നിവ യോജിപ്പിക്കുക.
21+4x-x^{2}-9=0
ഇരുവശങ്ങളിൽ നിന്നും 9 കുറയ്ക്കുക.
12+4x-x^{2}=0
12 നേടാൻ 21 എന്നതിൽ നിന്ന് 9 കുറയ്ക്കുക.
-x^{2}+4x+12=0
ബഹുപദം സാധാരണ രൂപത്തിൽ നൽകാൻ അത് പുനഃക്രമീകരിക്കുക. ഉയർന്നതിൽ നിന്നും താഴേക്കുള്ള പവർ ക്രമത്തിൽ നിബന്ധനകൾ അടുക്കുക.
a+b=4 ab=-12=-12
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം -x^{2}+ax+bx+12 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,12 -2,6 -3,4
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ, പോസിറ്റീവ് സംഖ്യയ്‌ക്ക് നെഗറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -12 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1+12=11 -2+6=4 -3+4=1
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=6 b=-2
സൊല്യൂഷൻ എന്നത് 4 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(-x^{2}+6x\right)+\left(-2x+12\right)
-x^{2}+4x+12 എന്നത് \left(-x^{2}+6x\right)+\left(-2x+12\right) എന്നായി തിരുത്തിയെഴുതുക.
-x\left(x-6\right)-2\left(x-6\right)
ആദ്യ ഗ്രൂപ്പിലെ -x എന്നതും രണ്ടാമത്തേതിലെ -2 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(x-6\right)\left(-x-2\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് x-6 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=6 x=-2
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x-6=0, -x-2=0 എന്നിവ സോൾവ് ചെയ്യുക.
\sqrt{21-2\times 6}=6-3
\sqrt{21-2x}=x-3 എന്ന സമവാക്യത്തിൽ x എന്നതിനായി 6 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
3=3
ലഘൂകരിക്കുക. മൂല്യം x=6 സമവാക്യം സാധൂകരിക്കുന്നു.
\sqrt{21-2\left(-2\right)}=-2-3
\sqrt{21-2x}=x-3 എന്ന സമവാക്യത്തിൽ x എന്നതിനായി -2 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
5=-5
ലഘൂകരിക്കുക. മൂല്യംx=-2 സമവാക്യം സാധൂകരിക്കുന്നില്ല, കാരണം ഇടത്, വലതുഭാഗങ്ങളിൽ വിരുദ്ധ ചിഹ്നങ്ങളാണുള്ളത്.
x=6
സമവാക്യം\sqrt{21-2x}=x-3-ന് തനത് പരിഹാരം ഉണ്ട്.