x എന്നതിനായി സോൾവ് ചെയ്യുക
x=3
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\sqrt{2x^{2}-9}=x
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും -x കുറയ്ക്കുക.
\left(\sqrt{2x^{2}-9}\right)^{2}=x^{2}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും സ്ക്വയർ ചെയ്യുക.
2x^{2}-9=x^{2}
2-ന്റെ പവറിലേക്ക് \sqrt{2x^{2}-9} കണക്കാക്കി 2x^{2}-9 നേടുക.
2x^{2}-9-x^{2}=0
ഇരുവശങ്ങളിൽ നിന്നും x^{2} കുറയ്ക്കുക.
x^{2}-9=0
x^{2} നേടാൻ 2x^{2}, -x^{2} എന്നിവ യോജിപ്പിക്കുക.
\left(x-3\right)\left(x+3\right)=0
x^{2}-9 പരിഗണിക്കുക. x^{2}-9 എന്നത് x^{2}-3^{2} എന്നായി തിരുത്തിയെഴുതുക. ചതുരങ്ങളുടെ വ്യത്യാസം ഇനിപ്പറയുന്ന നിയമം ഉപയോഗിച്ച് ഫക്ടർ ചെയ്യാൻ കഴിഞ്ഞേക്കാം: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=3 x=-3
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x-3=0, x+3=0 എന്നിവ സോൾവ് ചെയ്യുക.
\sqrt{2\times 3^{2}-9}-3=0
\sqrt{2x^{2}-9}-x=0 എന്ന സമവാക്യത്തിൽ x എന്നതിനായി 3 സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
0=0
ലഘൂകരിക്കുക. മൂല്യം x=3 സമവാക്യം സാധൂകരിക്കുന്നു.
\sqrt{2\left(-3\right)^{2}-9}-\left(-3\right)=0
\sqrt{2x^{2}-9}-x=0 എന്ന സമവാക്യത്തിൽ x എന്നതിനായി -3 സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
6=0
ലഘൂകരിക്കുക. മൂല്യം x=-3 സമവാക്യം സാധൂകരിക്കുന്നില്ല.
x=3
സമവാക്യം\sqrt{2x^{2}-9}=x-ന് തനത് പരിഹാരം ഉണ്ട്.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}