x എന്നതിനായി സോൾവ് ചെയ്യുക
x=9
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\sqrt{2x+7}=x-4
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 4 കുറയ്ക്കുക.
\left(\sqrt{2x+7}\right)^{2}=\left(x-4\right)^{2}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും സ്ക്വയർ ചെയ്യുക.
2x+7=\left(x-4\right)^{2}
2-ന്റെ പവറിലേക്ക് \sqrt{2x+7} കണക്കാക്കി 2x+7 നേടുക.
2x+7=x^{2}-8x+16
\left(x-4\right)^{2} വികസിപ്പിക്കാൻ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
2x+7-x^{2}=-8x+16
ഇരുവശങ്ങളിൽ നിന്നും x^{2} കുറയ്ക്കുക.
2x+7-x^{2}+8x=16
8x ഇരു വശങ്ങളിലും ചേർക്കുക.
10x+7-x^{2}=16
10x നേടാൻ 2x, 8x എന്നിവ യോജിപ്പിക്കുക.
10x+7-x^{2}-16=0
ഇരുവശങ്ങളിൽ നിന്നും 16 കുറയ്ക്കുക.
10x-9-x^{2}=0
-9 നേടാൻ 7 എന്നതിൽ നിന്ന് 16 കുറയ്ക്കുക.
-x^{2}+10x-9=0
ബഹുപദം സാധാരണ രൂപത്തിൽ നൽകാൻ അത് പുനഃക്രമീകരിക്കുക. ഉയർന്നതിൽ നിന്നും താഴേക്കുള്ള പവർ ക്രമത്തിൽ നിബന്ധനകൾ അടുക്കുക.
a+b=10 ab=-\left(-9\right)=9
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം -x^{2}+ax+bx-9 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,9 3,3
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് രണ്ടും പോസിറ്റീവാണ്. 9 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1+9=10 3+3=6
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=9 b=1
സൊല്യൂഷൻ എന്നത് 10 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(-x^{2}+9x\right)+\left(x-9\right)
-x^{2}+10x-9 എന്നത് \left(-x^{2}+9x\right)+\left(x-9\right) എന്നായി തിരുത്തിയെഴുതുക.
-x\left(x-9\right)+x-9
-x^{2}+9x എന്നതിൽ -x ഘടക ലഘൂകരണം ചെയ്യുക.
\left(x-9\right)\left(-x+1\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് x-9 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=9 x=1
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x-9=0, -x+1=0 എന്നിവ സോൾവ് ചെയ്യുക.
\sqrt{2\times 9+7}+4=9
\sqrt{2x+7}+4=x എന്ന സമവാക്യത്തിൽ x എന്നതിനായി 9 സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
9=9
ലഘൂകരിക്കുക. മൂല്യം x=9 സമവാക്യം സാധൂകരിക്കുന്നു.
\sqrt{2\times 1+7}+4=1
\sqrt{2x+7}+4=x എന്ന സമവാക്യത്തിൽ x എന്നതിനായി 1 സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
7=1
ലഘൂകരിക്കുക. മൂല്യം x=1 സമവാക്യം സാധൂകരിക്കുന്നില്ല.
x=9
സമവാക്യം\sqrt{2x+7}=x-4-ന് തനത് പരിഹാരം ഉണ്ട്.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}