പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

\left(\sqrt{-x+12}\right)^{2}=x^{2}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളും സ്ക്വയർ ചെയ്യുക.
-x+12=x^{2}
2-ന്റെ പവറിലേക്ക് \sqrt{-x+12} കണക്കാക്കി -x+12 നേടുക.
-x+12-x^{2}=0
ഇരുവശങ്ങളിൽ നിന്നും x^{2} കുറയ്ക്കുക.
-x^{2}-x+12=0
ബഹുപദം സാധാരണ രൂപത്തിൽ നൽകാൻ അത് പുനഃക്രമീകരിക്കുക. ഉയർന്നതിൽ നിന്നും താഴേക്കുള്ള പവർ ക്രമത്തിൽ നിബന്ധനകൾ അടുക്കുക.
a+b=-1 ab=-12=-12
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം -x^{2}+ax+bx+12 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,-12 2,-6 3,-4
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ, നെഗറ്റീവ് സംഖ്യയ്‌ക്ക് പോസിറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -12 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1-12=-11 2-6=-4 3-4=-1
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=3 b=-4
സൊല്യൂഷൻ എന്നത് -1 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(-x^{2}+3x\right)+\left(-4x+12\right)
-x^{2}-x+12 എന്നത് \left(-x^{2}+3x\right)+\left(-4x+12\right) എന്നായി തിരുത്തിയെഴുതുക.
x\left(-x+3\right)+4\left(-x+3\right)
ആദ്യ ഗ്രൂപ്പിലെ x എന്നതും രണ്ടാമത്തേതിലെ 4 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(-x+3\right)\left(x+4\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് -x+3 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=3 x=-4
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ -x+3=0, x+4=0 എന്നിവ സോൾവ് ചെയ്യുക.
\sqrt{-3+12}=3
\sqrt{-x+12}=x എന്ന സമവാക്യത്തിൽ x എന്നതിനായി 3 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
3=3
ലഘൂകരിക്കുക. മൂല്യം x=3 സമവാക്യം സാധൂകരിക്കുന്നു.
\sqrt{-\left(-4\right)+12}=-4
\sqrt{-x+12}=x എന്ന സമവാക്യത്തിൽ x എന്നതിനായി -4 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
4=-4
ലഘൂകരിക്കുക. മൂല്യംx=-4 സമവാക്യം സാധൂകരിക്കുന്നില്ല, കാരണം ഇടത്, വലതുഭാഗങ്ങളിൽ വിരുദ്ധ ചിഹ്നങ്ങളാണുള്ളത്.
x=3
സമവാക്യം\sqrt{12-x}=x-ന് തനത് പരിഹാരം ഉണ്ട്.