മൂല്യനിർണ്ണയം ചെയ്യുക
\frac{\sqrt{182}}{7}\approx 1.927248223
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\sqrt{\frac{\frac{2}{2}+\frac{1}{2}-\frac{1}{5}}{\frac{1}{4}+1-\frac{1}{2}-\frac{2}{5}}}
1 എന്നതിനെ \frac{2}{2} എന്ന അംശത്തിലേക്ക് മാറ്റുക.
\sqrt{\frac{\frac{2+1}{2}-\frac{1}{5}}{\frac{1}{4}+1-\frac{1}{2}-\frac{2}{5}}}
\frac{2}{2}, \frac{1}{2} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ ചേർത്തുകൊണ്ട് അവയെ ചേർക്കുക.
\sqrt{\frac{\frac{3}{2}-\frac{1}{5}}{\frac{1}{4}+1-\frac{1}{2}-\frac{2}{5}}}
3 ലഭ്യമാക്കാൻ 2, 1 എന്നിവ ചേർക്കുക.
\sqrt{\frac{\frac{15}{10}-\frac{2}{10}}{\frac{1}{4}+1-\frac{1}{2}-\frac{2}{5}}}
2, 5 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം 10 ആണ്. \frac{3}{2}, \frac{1}{5} എന്നിവയെ 10 എന്ന ഭിന്നസംഖ്യാഛേദിയുള്ള അംശങ്ങളാക്കി മാറ്റുക.
\sqrt{\frac{\frac{15-2}{10}}{\frac{1}{4}+1-\frac{1}{2}-\frac{2}{5}}}
\frac{15}{10}, \frac{2}{10} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ വ്യവകലനം ചെയ്ത് അവയെ വ്യവകലനം ചെയ്യുക.
\sqrt{\frac{\frac{13}{10}}{\frac{1}{4}+1-\frac{1}{2}-\frac{2}{5}}}
13 നേടാൻ 15 എന്നതിൽ നിന്ന് 2 കുറയ്ക്കുക.
\sqrt{\frac{\frac{13}{10}}{\frac{1}{4}+\frac{4}{4}-\frac{1}{2}-\frac{2}{5}}}
1 എന്നതിനെ \frac{4}{4} എന്ന അംശത്തിലേക്ക് മാറ്റുക.
\sqrt{\frac{\frac{13}{10}}{\frac{1+4}{4}-\frac{1}{2}-\frac{2}{5}}}
\frac{1}{4}, \frac{4}{4} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ ചേർത്തുകൊണ്ട് അവയെ ചേർക്കുക.
\sqrt{\frac{\frac{13}{10}}{\frac{5}{4}-\frac{1}{2}-\frac{2}{5}}}
5 ലഭ്യമാക്കാൻ 1, 4 എന്നിവ ചേർക്കുക.
\sqrt{\frac{\frac{13}{10}}{\frac{5}{4}-\frac{2}{4}-\frac{2}{5}}}
4, 2 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം 4 ആണ്. \frac{5}{4}, \frac{1}{2} എന്നിവയെ 4 എന്ന ഭിന്നസംഖ്യാഛേദിയുള്ള അംശങ്ങളാക്കി മാറ്റുക.
\sqrt{\frac{\frac{13}{10}}{\frac{5-2}{4}-\frac{2}{5}}}
\frac{5}{4}, \frac{2}{4} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ വ്യവകലനം ചെയ്ത് അവയെ വ്യവകലനം ചെയ്യുക.
\sqrt{\frac{\frac{13}{10}}{\frac{3}{4}-\frac{2}{5}}}
3 നേടാൻ 5 എന്നതിൽ നിന്ന് 2 കുറയ്ക്കുക.
\sqrt{\frac{\frac{13}{10}}{\frac{15}{20}-\frac{8}{20}}}
4, 5 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം 20 ആണ്. \frac{3}{4}, \frac{2}{5} എന്നിവയെ 20 എന്ന ഭിന്നസംഖ്യാഛേദിയുള്ള അംശങ്ങളാക്കി മാറ്റുക.
\sqrt{\frac{\frac{13}{10}}{\frac{15-8}{20}}}
\frac{15}{20}, \frac{8}{20} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ വ്യവകലനം ചെയ്ത് അവയെ വ്യവകലനം ചെയ്യുക.
\sqrt{\frac{\frac{13}{10}}{\frac{7}{20}}}
7 നേടാൻ 15 എന്നതിൽ നിന്ന് 8 കുറയ്ക്കുക.
\sqrt{\frac{13}{10}\times \frac{20}{7}}
\frac{7}{20} എന്നതിന്റെ പരസ്പരപൂരകം ഉപയോഗിച്ച് \frac{13}{10} ഗുണിക്കുന്നതിലൂടെ \frac{7}{20} കൊണ്ട് \frac{13}{10} എന്നതിനെ ഹരിക്കുക.
\sqrt{\frac{13\times 20}{10\times 7}}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് \frac{13}{10}, \frac{20}{7} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\sqrt{\frac{260}{70}}
\frac{13\times 20}{10\times 7} എന്ന അംശത്തിൽ ഗുണനം നടത്തുക.
\sqrt{\frac{26}{7}}
10 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{260}{70} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
\frac{\sqrt{26}}{\sqrt{7}}
\frac{\sqrt{26}}{\sqrt{7}} എന്നീ വർഗ്ഗമൂലങ്ങളുടെ ഹരണമെന്ന നിലയിൽ, \sqrt{\frac{26}{7}} എന്ന ഹരണത്തിന്റെ വർഗ്ഗമൂലം പുനരാലേഖനം ചെയ്യുക.
\frac{\sqrt{26}\sqrt{7}}{\left(\sqrt{7}\right)^{2}}
\sqrt{7} കൊണ്ട് അംശവും ഛേദവും ഗുണിക്കുന്നതിലൂടെ \frac{\sqrt{26}}{\sqrt{7}} എന്നതിന്റെ ഛേദം റേഷണലൈസ് ചെയ്യുക.
\frac{\sqrt{26}\sqrt{7}}{7}
\sqrt{7} എന്നതിന്റെ വർഗ്ഗം 7 ആണ്.
\frac{\sqrt{182}}{7}
\sqrt{26}, \sqrt{7} എന്നിവ ഗുണിക്കാൻ, വർഗ്ഗമൂലത്തിന് കീഴിലുള്ള സംഖ്യകൾ ഗുണിക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}