x എന്നതിനായി സോൾവ് ചെയ്യുക
x=\frac{7}{15}\approx 0.466666667
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\sqrt{\frac{4}{3}+\frac{1}{9}-\frac{1}{12}}=3x\left(\frac{1}{3}+\frac{1}{2}\right)
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല. സമവാക്യത്തിന്റെ ഇരുവശങ്ങളെയും x കൊണ്ട് ഗുണിക്കുക.
\sqrt{\frac{12}{9}+\frac{1}{9}-\frac{1}{12}}=3x\left(\frac{1}{3}+\frac{1}{2}\right)
3, 9 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം 9 ആണ്. \frac{4}{3}, \frac{1}{9} എന്നിവയെ 9 എന്ന ഭിന്നസംഖ്യാഛേദിയുള്ള അംശങ്ങളാക്കി മാറ്റുക.
\sqrt{\frac{12+1}{9}-\frac{1}{12}}=3x\left(\frac{1}{3}+\frac{1}{2}\right)
\frac{12}{9}, \frac{1}{9} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ ചേർത്തുകൊണ്ട് അവയെ ചേർക്കുക.
\sqrt{\frac{13}{9}-\frac{1}{12}}=3x\left(\frac{1}{3}+\frac{1}{2}\right)
13 ലഭ്യമാക്കാൻ 12, 1 എന്നിവ ചേർക്കുക.
\sqrt{\frac{52}{36}-\frac{3}{36}}=3x\left(\frac{1}{3}+\frac{1}{2}\right)
9, 12 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം 36 ആണ്. \frac{13}{9}, \frac{1}{12} എന്നിവയെ 36 എന്ന ഭിന്നസംഖ്യാഛേദിയുള്ള അംശങ്ങളാക്കി മാറ്റുക.
\sqrt{\frac{52-3}{36}}=3x\left(\frac{1}{3}+\frac{1}{2}\right)
\frac{52}{36}, \frac{3}{36} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ വ്യവകലനം ചെയ്ത് അവയെ വ്യവകലനം ചെയ്യുക.
\sqrt{\frac{49}{36}}=3x\left(\frac{1}{3}+\frac{1}{2}\right)
49 നേടാൻ 52 എന്നതിൽ നിന്ന് 3 കുറയ്ക്കുക.
\frac{7}{6}=3x\left(\frac{1}{3}+\frac{1}{2}\right)
\frac{\sqrt{49}}{\sqrt{36}} എന്നീ വർഗ്ഗമൂലങ്ങളുടെ ഹരണമെന്ന നിലയിൽ, \frac{49}{36} എന്ന ഹരണത്തിന്റെ വർഗ്ഗമൂലം പുനരാലേഖനം ചെയ്യുക. അംശത്തിന്റെയും ഛേദത്തിന്റെയും വർഗ്ഗമൂലം എടുക്കുക.
\frac{7}{6}=3x\left(\frac{2}{6}+\frac{3}{6}\right)
3, 2 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം 6 ആണ്. \frac{1}{3}, \frac{1}{2} എന്നിവയെ 6 എന്ന ഭിന്നസംഖ്യാഛേദിയുള്ള അംശങ്ങളാക്കി മാറ്റുക.
\frac{7}{6}=3x\times \frac{2+3}{6}
\frac{2}{6}, \frac{3}{6} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ ചേർത്തുകൊണ്ട് അവയെ ചേർക്കുക.
\frac{7}{6}=3x\times \frac{5}{6}
5 ലഭ്യമാക്കാൻ 2, 3 എന്നിവ ചേർക്കുക.
\frac{7}{6}=\frac{3\times 5}{6}x
ഏക അംശമായി 3\times \frac{5}{6} ആവിഷ്ക്കരിക്കുക.
\frac{7}{6}=\frac{15}{6}x
15 നേടാൻ 3, 5 എന്നിവ ഗുണിക്കുക.
\frac{7}{6}=\frac{5}{2}x
3 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{15}{6} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
\frac{5}{2}x=\frac{7}{6}
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
x=\frac{7}{6}\times \frac{2}{5}
\frac{5}{2} എന്നതിന്റെ പരസ്പരപൂരകമായ \frac{2}{5} ഉപയോഗിച്ച് ഇരുവശങ്ങളും ഗുണിക്കുക.
x=\frac{7\times 2}{6\times 5}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് \frac{7}{6}, \frac{2}{5} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{14}{30}
\frac{7\times 2}{6\times 5} എന്ന അംശത്തിൽ ഗുണനം നടത്തുക.
x=\frac{7}{15}
2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{14}{30} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}