മൂല്യനിർണ്ണയം ചെയ്യുക
\frac{1}{2}=0.5
ഘടകം
\frac{1}{2} = 0.5
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\sqrt{\frac{3}{2}\left(\frac{45}{36}-\frac{40}{36}\right)+\frac{1}{16}-\frac{\frac{1}{2}-\frac{7}{18}}{\frac{16}{3}}}
4, 9 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം 36 ആണ്. \frac{5}{4}, \frac{10}{9} എന്നിവയെ 36 എന്ന ഭിന്നസംഖ്യാഛേദിയുള്ള അംശങ്ങളാക്കി മാറ്റുക.
\sqrt{\frac{3}{2}\times \frac{45-40}{36}+\frac{1}{16}-\frac{\frac{1}{2}-\frac{7}{18}}{\frac{16}{3}}}
\frac{45}{36}, \frac{40}{36} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ വ്യവകലനം ചെയ്ത് അവയെ വ്യവകലനം ചെയ്യുക.
\sqrt{\frac{3}{2}\times \frac{5}{36}+\frac{1}{16}-\frac{\frac{1}{2}-\frac{7}{18}}{\frac{16}{3}}}
5 നേടാൻ 45 എന്നതിൽ നിന്ന് 40 കുറയ്ക്കുക.
\sqrt{\frac{3\times 5}{2\times 36}+\frac{1}{16}-\frac{\frac{1}{2}-\frac{7}{18}}{\frac{16}{3}}}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് \frac{3}{2}, \frac{5}{36} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\sqrt{\frac{15}{72}+\frac{1}{16}-\frac{\frac{1}{2}-\frac{7}{18}}{\frac{16}{3}}}
\frac{3\times 5}{2\times 36} എന്ന അംശത്തിൽ ഗുണനം നടത്തുക.
\sqrt{\frac{5}{24}+\frac{1}{16}-\frac{\frac{1}{2}-\frac{7}{18}}{\frac{16}{3}}}
3 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{15}{72} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
\sqrt{\frac{10}{48}+\frac{3}{48}-\frac{\frac{1}{2}-\frac{7}{18}}{\frac{16}{3}}}
24, 16 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം 48 ആണ്. \frac{5}{24}, \frac{1}{16} എന്നിവയെ 48 എന്ന ഭിന്നസംഖ്യാഛേദിയുള്ള അംശങ്ങളാക്കി മാറ്റുക.
\sqrt{\frac{10+3}{48}-\frac{\frac{1}{2}-\frac{7}{18}}{\frac{16}{3}}}
\frac{10}{48}, \frac{3}{48} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ ചേർത്തുകൊണ്ട് അവയെ ചേർക്കുക.
\sqrt{\frac{13}{48}-\frac{\frac{1}{2}-\frac{7}{18}}{\frac{16}{3}}}
13 ലഭ്യമാക്കാൻ 10, 3 എന്നിവ ചേർക്കുക.
\sqrt{\frac{13}{48}-\frac{\frac{9}{18}-\frac{7}{18}}{\frac{16}{3}}}
2, 18 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം 18 ആണ്. \frac{1}{2}, \frac{7}{18} എന്നിവയെ 18 എന്ന ഭിന്നസംഖ്യാഛേദിയുള്ള അംശങ്ങളാക്കി മാറ്റുക.
\sqrt{\frac{13}{48}-\frac{\frac{9-7}{18}}{\frac{16}{3}}}
\frac{9}{18}, \frac{7}{18} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ വ്യവകലനം ചെയ്ത് അവയെ വ്യവകലനം ചെയ്യുക.
\sqrt{\frac{13}{48}-\frac{\frac{2}{18}}{\frac{16}{3}}}
2 നേടാൻ 9 എന്നതിൽ നിന്ന് 7 കുറയ്ക്കുക.
\sqrt{\frac{13}{48}-\frac{\frac{1}{9}}{\frac{16}{3}}}
2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{2}{18} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
\sqrt{\frac{13}{48}-\frac{1}{9}\times \frac{3}{16}}
\frac{16}{3} എന്നതിന്റെ പരസ്പരപൂരകം ഉപയോഗിച്ച് \frac{1}{9} ഗുണിക്കുന്നതിലൂടെ \frac{16}{3} കൊണ്ട് \frac{1}{9} എന്നതിനെ ഹരിക്കുക.
\sqrt{\frac{13}{48}-\frac{1\times 3}{9\times 16}}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് \frac{1}{9}, \frac{3}{16} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\sqrt{\frac{13}{48}-\frac{3}{144}}
\frac{1\times 3}{9\times 16} എന്ന അംശത്തിൽ ഗുണനം നടത്തുക.
\sqrt{\frac{13}{48}-\frac{1}{48}}
3 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{3}{144} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
\sqrt{\frac{13-1}{48}}
\frac{13}{48}, \frac{1}{48} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ വ്യവകലനം ചെയ്ത് അവയെ വ്യവകലനം ചെയ്യുക.
\sqrt{\frac{12}{48}}
12 നേടാൻ 13 എന്നതിൽ നിന്ന് 1 കുറയ്ക്കുക.
\sqrt{\frac{1}{4}}
12 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{12}{48} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
\frac{1}{2}
\frac{\sqrt{1}}{\sqrt{4}} എന്നീ വർഗ്ഗമൂലങ്ങളുടെ ഹരണമെന്ന നിലയിൽ, \frac{1}{4} എന്ന ഹരണത്തിന്റെ വർഗ്ഗമൂലം പുനരാലേഖനം ചെയ്യുക. അംശത്തിന്റെയും ഛേദത്തിന്റെയും വർഗ്ഗമൂലം എടുക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}