പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image

പങ്കിടുക

\left(\frac{1}{2}\right)^{2}\left(\cos(45)\right)^{2}+4\left(\tan(30)\right)^{2}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
ത്രികോണമിതി മൂല്യ പട്ടികയിൽ നിന്ന് \sin(30) ന്‍റെ മൂല്യം നേടുക.
\frac{1}{4}\left(\cos(45)\right)^{2}+4\left(\tan(30)\right)^{2}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
2-ന്റെ പവറിലേക്ക് \frac{1}{2} കണക്കാക്കി \frac{1}{4} നേടുക.
\frac{1}{4}\times \left(\frac{\sqrt{2}}{2}\right)^{2}+4\left(\tan(30)\right)^{2}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
ത്രികോണമിതി മൂല്യ പട്ടികയിൽ നിന്ന് \cos(45) ന്‍റെ മൂല്യം നേടുക.
\frac{1}{4}\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}+4\left(\tan(30)\right)^{2}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
\frac{\sqrt{2}}{2} എന്നതിന് പവർ നൽകാൻ, അംശവും ഛേദവും പവറിലേക്ക് ഉയർത്തിയ ശേഷം ഹരിക്കുക.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+4\left(\tan(30)\right)^{2}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് \frac{1}{4}, \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+4\times \left(\frac{\sqrt{3}}{3}\right)^{2}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
ത്രികോണമിതി മൂല്യ പട്ടികയിൽ നിന്ന് \tan(30) ന്‍റെ മൂല്യം നേടുക.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+4\times \frac{\left(\sqrt{3}\right)^{2}}{3^{2}}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
\frac{\sqrt{3}}{3} എന്നതിന് പവർ നൽകാൻ, അംശവും ഛേദവും പവറിലേക്ക് ഉയർത്തിയ ശേഷം ഹരിക്കുക.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
ഏക അംശമായി 4\times \frac{\left(\sqrt{3}\right)^{2}}{3^{2}} ആവിഷ്‌ക്കരിക്കുക.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}+\frac{1}{2}\times 1^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
ത്രികോണമിതി മൂല്യ പട്ടികയിൽ നിന്ന് \sin(90) ന്‍റെ മൂല്യം നേടുക.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}+\frac{1}{2}\times 1-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
2-ന്റെ പവറിലേക്ക് 1 കണക്കാക്കി 1 നേടുക.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}+\frac{1}{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
\frac{1}{2} നേടാൻ \frac{1}{2}, 1 എന്നിവ ഗുണിക്കുക.
\frac{9\left(\sqrt{2}\right)^{2}}{144}+\frac{16\times 4\left(\sqrt{3}\right)^{2}}{144}+\frac{1}{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. 4\times 2^{2}, 3^{2} എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം 144 ആണ്. \frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}, \frac{9}{9} എന്നിവ തമ്മിൽ ഗുണിക്കുക. \frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}, \frac{16}{16} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{9\left(\sqrt{2}\right)^{2}+16\times 4\left(\sqrt{3}\right)^{2}}{144}+\frac{1}{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
\frac{9\left(\sqrt{2}\right)^{2}}{144}, \frac{16\times 4\left(\sqrt{3}\right)^{2}}{144} എന്നിവയ്‌ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ ചേർത്തുകൊണ്ട് അവയെ ചേർക്കുക.
\frac{\left(\sqrt{2}\right)^{2}}{16}+\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}+\frac{8}{16}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. 4\times 2^{2}, 2 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം 16 ആണ്. \frac{1}{2}, \frac{8}{8} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{\left(\sqrt{2}\right)^{2}+8}{16}+\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
\frac{\left(\sqrt{2}\right)^{2}}{16}, \frac{8}{16} എന്നിവയ്‌ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ ചേർത്തുകൊണ്ട് അവയെ ചേർക്കുക.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}}{18}+\frac{9}{18}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. 3^{2}, 2 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം 18 ആണ്. \frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}, \frac{2}{2} എന്നിവ തമ്മിൽ ഗുണിക്കുക. \frac{1}{2}, \frac{9}{9} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
\frac{2\times 4\left(\sqrt{3}\right)^{2}}{18}, \frac{9}{18} എന്നിവയ്‌ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ ചേർത്തുകൊണ്ട് അവയെ ചേർക്കുക.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-2\times 0^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
ത്രികോണമിതി മൂല്യ പട്ടികയിൽ നിന്ന് \cos(90) ന്‍റെ മൂല്യം നേടുക.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-2\times 0+\frac{1}{24}\left(\cos(0)\right)^{2}
2-ന്റെ പവറിലേക്ക് 0 കണക്കാക്കി 0 നേടുക.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}\left(\cos(0)\right)^{2}
0 നേടാൻ 2, 0 എന്നിവ ഗുണിക്കുക.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}\times 1^{2}
ത്രികോണമിതി മൂല്യ പട്ടികയിൽ നിന്ന് \cos(0) ന്‍റെ മൂല്യം നേടുക.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}\times 1
2-ന്റെ പവറിലേക്ക് 1 കണക്കാക്കി 1 നേടുക.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}
\frac{1}{24} നേടാൻ \frac{1}{24}, 1 എന്നിവ ഗുണിക്കുക.
\frac{2}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}
\sqrt{2} എന്നതിന്‍റെ വർഗ്ഗം 2 ആണ്.
\frac{2}{4\times 4}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}
2-ന്റെ പവറിലേക്ക് 2 കണക്കാക്കി 4 നേടുക.
\frac{2}{16}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}
16 നേടാൻ 4, 4 എന്നിവ ഗുണിക്കുക.
\frac{1}{8}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}
2 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{2}{16} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
\frac{1}{8}+\frac{8\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}
8 നേടാൻ 2, 4 എന്നിവ ഗുണിക്കുക.
\frac{1}{8}+\frac{8\times 3+9}{18}-0+\frac{1}{24}
\sqrt{3} എന്നതിന്‍റെ വർഗ്ഗം 3 ആണ്.
\frac{1}{8}+\frac{24+9}{18}-0+\frac{1}{24}
24 നേടാൻ 8, 3 എന്നിവ ഗുണിക്കുക.
\frac{1}{8}+\frac{33}{18}-0+\frac{1}{24}
33 ലഭ്യമാക്കാൻ 24, 9 എന്നിവ ചേർക്കുക.
\frac{1}{8}+\frac{11}{6}-0+\frac{1}{24}
3 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{33}{18} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
\frac{47}{24}-0+\frac{1}{24}
\frac{47}{24} ലഭ്യമാക്കാൻ \frac{1}{8}, \frac{11}{6} എന്നിവ ചേർക്കുക.
\frac{47}{24}+\frac{1}{24}
\frac{47}{24} നേടാൻ \frac{47}{24} എന്നതിൽ നിന്ന് 0 കുറയ്ക്കുക.
2
2 ലഭ്യമാക്കാൻ \frac{47}{24}, \frac{1}{24} എന്നിവ ചേർക്കുക.