പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

-x-y=-6,2x-3y=-3
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-x-y=-6
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
-x=y-6
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും y ചേർക്കുക.
x=-\left(y-6\right)
ഇരുവശങ്ങളെയും -1 കൊണ്ട് ഹരിക്കുക.
x=-y+6
-1, y-6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
2\left(-y+6\right)-3y=-3
2x-3y=-3 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി -y+6 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-2y+12-3y=-3
2, -y+6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-5y+12=-3
-2y, -3y എന്നതിൽ ചേർക്കുക.
-5y=-15
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 12 കുറയ്ക്കുക.
y=3
ഇരുവശങ്ങളെയും -5 കൊണ്ട് ഹരിക്കുക.
x=-3+6
x=-y+6 എന്നതിലെ y എന്നതിനായി 3 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=3
6, -3 എന്നതിൽ ചേർക്കുക.
x=3,y=3
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
-x-y=-6,2x-3y=-3
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}-1&-1\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\-3\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}-1&-1\\2&-3\end{matrix}\right))\left(\begin{matrix}-1&-1\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-1\\2&-3\end{matrix}\right))\left(\begin{matrix}-6\\-3\end{matrix}\right)
\left(\begin{matrix}-1&-1\\2&-3\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-1\\2&-3\end{matrix}\right))\left(\begin{matrix}-6\\-3\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-1\\2&-3\end{matrix}\right))\left(\begin{matrix}-6\\-3\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-\left(-3\right)-\left(-2\right)}&-\frac{-1}{-\left(-3\right)-\left(-2\right)}\\-\frac{2}{-\left(-3\right)-\left(-2\right)}&-\frac{1}{-\left(-3\right)-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-6\\-3\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5}&\frac{1}{5}\\-\frac{2}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-6\\-3\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5}\left(-6\right)+\frac{1}{5}\left(-3\right)\\-\frac{2}{5}\left(-6\right)-\frac{1}{5}\left(-3\right)\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\3\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=3,y=3
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
-x-y=-6,2x-3y=-3
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
2\left(-1\right)x+2\left(-1\right)y=2\left(-6\right),-2x-\left(-3y\right)=-\left(-3\right)
-x, 2x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 2 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും -1 കൊണ്ടും ഗുണിക്കുക.
-2x-2y=-12,-2x+3y=3
ലഘൂകരിക്കുക.
-2x+2x-2y-3y=-12-3
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് -2x-2y=-12 എന്നതിൽ നിന്ന് -2x+3y=3 കുറയ്ക്കുക.
-2y-3y=-12-3
-2x, 2x എന്നതിൽ ചേർക്കുക. -2x, 2x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
-5y=-12-3
-2y, -3y എന്നതിൽ ചേർക്കുക.
-5y=-15
-12, -3 എന്നതിൽ ചേർക്കുക.
y=3
ഇരുവശങ്ങളെയും -5 കൊണ്ട് ഹരിക്കുക.
2x-3\times 3=-3
2x-3y=-3 എന്നതിലെ y എന്നതിനായി 3 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
2x-9=-3
-3, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
2x=6
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 9 ചേർക്കുക.
x=3
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
x=3,y=3
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.