പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
m, n എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

m+n=-3,-3m+2n=1
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
m+n=-3
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള m മാറ്റിനിർത്തിക്കൊണ്ട് m എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
m=-n-3
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും n കുറയ്ക്കുക.
-3\left(-n-3\right)+2n=1
-3m+2n=1 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ m എന്നതിനായി -n-3 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
3n+9+2n=1
-3, -n-3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
5n+9=1
3n, 2n എന്നതിൽ ചേർക്കുക.
5n=-8
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 9 കുറയ്ക്കുക.
n=-\frac{8}{5}
ഇരുവശങ്ങളെയും 5 കൊണ്ട് ഹരിക്കുക.
m=-\left(-\frac{8}{5}\right)-3
m=-n-3 എന്നതിലെ n എന്നതിനായി -\frac{8}{5} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് m എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
m=\frac{8}{5}-3
-1, -\frac{8}{5} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
m=-\frac{7}{5}
-3, \frac{8}{5} എന്നതിൽ ചേർക്കുക.
m=-\frac{7}{5},n=-\frac{8}{5}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
m+n=-3,-3m+2n=1
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}1&1\\-3&2\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-3\\1\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}1&1\\-3&2\end{matrix}\right))\left(\begin{matrix}1&1\\-3&2\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&2\end{matrix}\right))\left(\begin{matrix}-3\\1\end{matrix}\right)
\left(\begin{matrix}1&1\\-3&2\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&2\end{matrix}\right))\left(\begin{matrix}-3\\1\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&2\end{matrix}\right))\left(\begin{matrix}-3\\1\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-3\right)}&-\frac{1}{2-\left(-3\right)}\\-\frac{-3}{2-\left(-3\right)}&\frac{1}{2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-3\\1\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&-\frac{1}{5}\\\frac{3}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-3\\1\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\left(-3\right)-\frac{1}{5}\\\frac{3}{5}\left(-3\right)+\frac{1}{5}\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{5}\\-\frac{8}{5}\end{matrix}\right)
ഗണിതം ചെയ്യുക.
m=-\frac{7}{5},n=-\frac{8}{5}
m, n എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
m+n=-3,-3m+2n=1
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
-3m-3n=-3\left(-3\right),-3m+2n=1
m, -3m എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും -3 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 1 കൊണ്ടും ഗുണിക്കുക.
-3m-3n=9,-3m+2n=1
ലഘൂകരിക്കുക.
-3m+3m-3n-2n=9-1
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് -3m-3n=9 എന്നതിൽ നിന്ന് -3m+2n=1 കുറയ്ക്കുക.
-3n-2n=9-1
-3m, 3m എന്നതിൽ ചേർക്കുക. -3m, 3m എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
-5n=9-1
-3n, -2n എന്നതിൽ ചേർക്കുക.
-5n=8
9, -1 എന്നതിൽ ചേർക്കുക.
n=-\frac{8}{5}
ഇരുവശങ്ങളെയും -5 കൊണ്ട് ഹരിക്കുക.
-3m+2\left(-\frac{8}{5}\right)=1
-3m+2n=1 എന്നതിലെ n എന്നതിനായി -\frac{8}{5} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് m എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
-3m-\frac{16}{5}=1
2, -\frac{8}{5} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-3m=\frac{21}{5}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{16}{5} ചേർക്കുക.
m=-\frac{7}{5}
ഇരുവശങ്ങളെയും -3 കൊണ്ട് ഹരിക്കുക.
m=-\frac{7}{5},n=-\frac{8}{5}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.