പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

x-7y=-11,5x+2y=-18
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x-7y=-11
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
x=7y-11
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 7y ചേർക്കുക.
5\left(7y-11\right)+2y=-18
5x+2y=-18 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി 7y-11 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
35y-55+2y=-18
5, 7y-11 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
37y-55=-18
35y, 2y എന്നതിൽ ചേർക്കുക.
37y=37
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 55 ചേർക്കുക.
y=1
ഇരുവശങ്ങളെയും 37 കൊണ്ട് ഹരിക്കുക.
x=7-11
x=7y-11 എന്നതിലെ y എന്നതിനായി 1 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=-4
-11, 7 എന്നതിൽ ചേർക്കുക.
x=-4,y=1
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
x-7y=-11,5x+2y=-18
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}1&-7\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-11\\-18\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}1&-7\\5&2\end{matrix}\right))\left(\begin{matrix}1&-7\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-7\\5&2\end{matrix}\right))\left(\begin{matrix}-11\\-18\end{matrix}\right)
\left(\begin{matrix}1&-7\\5&2\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-7\\5&2\end{matrix}\right))\left(\begin{matrix}-11\\-18\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-7\\5&2\end{matrix}\right))\left(\begin{matrix}-11\\-18\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-7\times 5\right)}&-\frac{-7}{2-\left(-7\times 5\right)}\\-\frac{5}{2-\left(-7\times 5\right)}&\frac{1}{2-\left(-7\times 5\right)}\end{matrix}\right)\left(\begin{matrix}-11\\-18\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{37}&\frac{7}{37}\\-\frac{5}{37}&\frac{1}{37}\end{matrix}\right)\left(\begin{matrix}-11\\-18\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{37}\left(-11\right)+\frac{7}{37}\left(-18\right)\\-\frac{5}{37}\left(-11\right)+\frac{1}{37}\left(-18\right)\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\1\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=-4,y=1
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
x-7y=-11,5x+2y=-18
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
5x+5\left(-7\right)y=5\left(-11\right),5x+2y=-18
x, 5x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 5 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 1 കൊണ്ടും ഗുണിക്കുക.
5x-35y=-55,5x+2y=-18
ലഘൂകരിക്കുക.
5x-5x-35y-2y=-55+18
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 5x-35y=-55 എന്നതിൽ നിന്ന് 5x+2y=-18 കുറയ്ക്കുക.
-35y-2y=-55+18
5x, -5x എന്നതിൽ ചേർക്കുക. 5x, -5x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
-37y=-55+18
-35y, -2y എന്നതിൽ ചേർക്കുക.
-37y=-37
-55, 18 എന്നതിൽ ചേർക്കുക.
y=1
ഇരുവശങ്ങളെയും -37 കൊണ്ട് ഹരിക്കുക.
5x+2=-18
5x+2y=-18 എന്നതിലെ y എന്നതിനായി 1 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
5x=-20
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 2 കുറയ്ക്കുക.
x=-4
ഇരുവശങ്ങളെയും 5 കൊണ്ട് ഹരിക്കുക.
x=-4,y=1
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.