പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
d, q എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

d+q=40,10d+0.25q=5.8
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
d+q=40
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള d മാറ്റിനിർത്തിക്കൊണ്ട് d എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
d=-q+40
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും q കുറയ്ക്കുക.
10\left(-q+40\right)+0.25q=5.8
10d+0.25q=5.8 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ d എന്നതിനായി -q+40 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-10q+400+0.25q=5.8
10, -q+40 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-9.75q+400=5.8
-10q, \frac{q}{4} എന്നതിൽ ചേർക്കുക.
-9.75q=-394.2
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 400 കുറയ്ക്കുക.
q=\frac{2628}{65}
-9.75 കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്‍റെ പരസ്പരപൂരകത്തിന്‍റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
d=-\frac{2628}{65}+40
d=-q+40 എന്നതിലെ q എന്നതിനായി \frac{2628}{65} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് d എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
d=-\frac{28}{65}
40, -\frac{2628}{65} എന്നതിൽ ചേർക്കുക.
d=-\frac{28}{65},q=\frac{2628}{65}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
d+q=40,10d+0.25q=5.8
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}1&1\\10&0.25\end{matrix}\right)\left(\begin{matrix}d\\q\end{matrix}\right)=\left(\begin{matrix}40\\5.8\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}1&1\\10&0.25\end{matrix}\right))\left(\begin{matrix}1&1\\10&0.25\end{matrix}\right)\left(\begin{matrix}d\\q\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\10&0.25\end{matrix}\right))\left(\begin{matrix}40\\5.8\end{matrix}\right)
\left(\begin{matrix}1&1\\10&0.25\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}d\\q\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\10&0.25\end{matrix}\right))\left(\begin{matrix}40\\5.8\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}d\\q\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\10&0.25\end{matrix}\right))\left(\begin{matrix}40\\5.8\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}d\\q\end{matrix}\right)=\left(\begin{matrix}\frac{0.25}{0.25-10}&-\frac{1}{0.25-10}\\-\frac{10}{0.25-10}&\frac{1}{0.25-10}\end{matrix}\right)\left(\begin{matrix}40\\5.8\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}d\\q\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{39}&\frac{4}{39}\\\frac{40}{39}&-\frac{4}{39}\end{matrix}\right)\left(\begin{matrix}40\\5.8\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}d\\q\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{39}\times 40+\frac{4}{39}\times 5.8\\\frac{40}{39}\times 40-\frac{4}{39}\times 5.8\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}d\\q\end{matrix}\right)=\left(\begin{matrix}-\frac{28}{65}\\\frac{2628}{65}\end{matrix}\right)
ഗണിതം ചെയ്യുക.
d=-\frac{28}{65},q=\frac{2628}{65}
d, q എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
d+q=40,10d+0.25q=5.8
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
10d+10q=10\times 40,10d+0.25q=5.8
d, 10d എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 10 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 1 കൊണ്ടും ഗുണിക്കുക.
10d+10q=400,10d+0.25q=5.8
ലഘൂകരിക്കുക.
10d-10d+10q-0.25q=400-5.8
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 10d+10q=400 എന്നതിൽ നിന്ന് 10d+0.25q=5.8 കുറയ്ക്കുക.
10q-0.25q=400-5.8
10d, -10d എന്നതിൽ ചേർക്കുക. 10d, -10d എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
9.75q=400-5.8
10q, -\frac{q}{4} എന്നതിൽ ചേർക്കുക.
9.75q=394.2
400, -5.8 എന്നതിൽ ചേർക്കുക.
q=\frac{2628}{65}
9.75 കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്‍റെ പരസ്പരപൂരകത്തിന്‍റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
10d+0.25\times \frac{2628}{65}=5.8
10d+0.25q=5.8 എന്നതിലെ q എന്നതിനായി \frac{2628}{65} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് d എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
10d+\frac{657}{65}=5.8
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് 0.25, \frac{2628}{65} എന്നിവ തമ്മിൽ ഗുണിക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
10d=-\frac{56}{13}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{657}{65} കുറയ്ക്കുക.
d=-\frac{28}{65}
ഇരുവശങ്ങളെയും 10 കൊണ്ട് ഹരിക്കുക.
d=-\frac{28}{65},q=\frac{2628}{65}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.