V, a എന്നതിനായി സോൾവ് ചെയ്യുക
V=10
a=4
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
V+2.5a=20,2V+10a=60
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
V+2.5a=20
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്റെ ഇടതുഭാഗത്തുള്ള V മാറ്റിനിർത്തിക്കൊണ്ട് V എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
V=-2.5a+20
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{5a}{2} കുറയ്ക്കുക.
2\left(-2.5a+20\right)+10a=60
2V+10a=60 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ V എന്നതിനായി -\frac{5a}{2}+20 സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-5a+40+10a=60
2, -\frac{5a}{2}+20 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
5a+40=60
-5a, 10a എന്നതിൽ ചേർക്കുക.
5a=20
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 40 കുറയ്ക്കുക.
a=4
ഇരുവശങ്ങളെയും 5 കൊണ്ട് ഹരിക്കുക.
V=-2.5\times 4+20
V=-2.5a+20 എന്നതിലെ a എന്നതിനായി 4 സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് V എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
V=-10+20
-2.5, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
V=10
20, -10 എന്നതിൽ ചേർക്കുക.
V=10,a=4
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
V+2.5a=20,2V+10a=60
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}1&2.5\\2&10\end{matrix}\right)\left(\begin{matrix}V\\a\end{matrix}\right)=\left(\begin{matrix}20\\60\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}1&2.5\\2&10\end{matrix}\right))\left(\begin{matrix}1&2.5\\2&10\end{matrix}\right)\left(\begin{matrix}V\\a\end{matrix}\right)=inverse(\left(\begin{matrix}1&2.5\\2&10\end{matrix}\right))\left(\begin{matrix}20\\60\end{matrix}\right)
\left(\begin{matrix}1&2.5\\2&10\end{matrix}\right) എന്നതിന്റെ വിപരീത മെട്രിക്സ് കൊണ്ട് സമവാക്യത്തിന്റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}V\\a\end{matrix}\right)=inverse(\left(\begin{matrix}1&2.5\\2&10\end{matrix}\right))\left(\begin{matrix}20\\60\end{matrix}\right)
ഒരു മെട്രിക്സിന്റെയും അതിന്റെ വിപരീതത്തിന്റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്സ് ആണ്.
\left(\begin{matrix}V\\a\end{matrix}\right)=inverse(\left(\begin{matrix}1&2.5\\2&10\end{matrix}\right))\left(\begin{matrix}20\\60\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}V\\a\end{matrix}\right)=\left(\begin{matrix}\frac{10}{10-2.5\times 2}&-\frac{2.5}{10-2.5\times 2}\\-\frac{2}{10-2.5\times 2}&\frac{1}{10-2.5\times 2}\end{matrix}\right)\left(\begin{matrix}20\\60\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}V\\a\end{matrix}\right)=\left(\begin{matrix}2&-\frac{1}{2}\\-\frac{2}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}20\\60\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}V\\a\end{matrix}\right)=\left(\begin{matrix}2\times 20-\frac{1}{2}\times 60\\-\frac{2}{5}\times 20+\frac{1}{5}\times 60\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}V\\a\end{matrix}\right)=\left(\begin{matrix}10\\4\end{matrix}\right)
ഗണിതം ചെയ്യുക.
V=10,a=4
V, a എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
V+2.5a=20,2V+10a=60
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
2V+2\times 2.5a=2\times 20,2V+10a=60
V, 2V എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 2 കൊണ്ടും രണ്ടാമത്തേതിന്റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 1 കൊണ്ടും ഗുണിക്കുക.
2V+5a=40,2V+10a=60
ലഘൂകരിക്കുക.
2V-2V+5a-10a=40-60
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 2V+5a=40 എന്നതിൽ നിന്ന് 2V+10a=60 കുറയ്ക്കുക.
5a-10a=40-60
2V, -2V എന്നതിൽ ചേർക്കുക. 2V, -2V എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
-5a=40-60
5a, -10a എന്നതിൽ ചേർക്കുക.
-5a=-20
40, -60 എന്നതിൽ ചേർക്കുക.
a=4
ഇരുവശങ്ങളെയും -5 കൊണ്ട് ഹരിക്കുക.
2V+10\times 4=60
2V+10a=60 എന്നതിലെ a എന്നതിനായി 4 സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് V എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
2V+40=60
10, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
2V=20
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 40 കുറയ്ക്കുക.
V=10
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
V=10,a=4
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}