പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
a, b എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

5a-5b=5,a+b=3
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
5a-5b=5
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള a മാറ്റിനിർത്തിക്കൊണ്ട് a എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
5a=5b+5
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 5b ചേർക്കുക.
a=\frac{1}{5}\left(5b+5\right)
ഇരുവശങ്ങളെയും 5 കൊണ്ട് ഹരിക്കുക.
a=b+1
\frac{1}{5}, 5+5b എന്നിവ തമ്മിൽ ഗുണിക്കുക.
b+1+b=3
a+b=3 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ a എന്നതിനായി b+1 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
2b+1=3
b, b എന്നതിൽ ചേർക്കുക.
2b=2
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 1 കുറയ്ക്കുക.
b=1
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
a=1+1
a=b+1 എന്നതിലെ b എന്നതിനായി 1 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് a എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
a=2
1, 1 എന്നതിൽ ചേർക്കുക.
a=2,b=1
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
5a-5b=5,a+b=3
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}5&-5\\1&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}5\\3\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}5&-5\\1&1\end{matrix}\right))\left(\begin{matrix}5&-5\\1&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}5&-5\\1&1\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
\left(\begin{matrix}5&-5\\1&1\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}5&-5\\1&1\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}5&-5\\1&1\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5-\left(-5\right)}&-\frac{-5}{5-\left(-5\right)}\\-\frac{1}{5-\left(-5\right)}&\frac{5}{5-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}5\\3\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&\frac{1}{2}\\-\frac{1}{10}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}5\\3\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\times 5+\frac{1}{2}\times 3\\-\frac{1}{10}\times 5+\frac{1}{2}\times 3\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
ഗണിതം ചെയ്യുക.
a=2,b=1
a, b എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
5a-5b=5,a+b=3
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
5a-5b=5,5a+5b=5\times 3
5a, a എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 1 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 5 കൊണ്ടും ഗുണിക്കുക.
5a-5b=5,5a+5b=15
ലഘൂകരിക്കുക.
5a-5a-5b-5b=5-15
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 5a-5b=5 എന്നതിൽ നിന്ന് 5a+5b=15 കുറയ്ക്കുക.
-5b-5b=5-15
5a, -5a എന്നതിൽ ചേർക്കുക. 5a, -5a എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
-10b=5-15
-5b, -5b എന്നതിൽ ചേർക്കുക.
-10b=-10
5, -15 എന്നതിൽ ചേർക്കുക.
b=1
ഇരുവശങ്ങളെയും -10 കൊണ്ട് ഹരിക്കുക.
a+1=3
a+b=3 എന്നതിലെ b എന്നതിനായി 1 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് a എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
a=2
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 1 കുറയ്ക്കുക.
a=2,b=1
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.