പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

1.2x+3y=8,6x-3y=10
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
1.2x+3y=8
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
1.2x=-3y+8
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 3y കുറയ്ക്കുക.
x=\frac{5}{6}\left(-3y+8\right)
1.2 കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്‍റെ പരസ്പരപൂരകത്തിന്‍റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
x=-2.5y+\frac{20}{3}
\frac{5}{6}, -3y+8 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
6\left(-2.5y+\frac{20}{3}\right)-3y=10
6x-3y=10 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി -\frac{5y}{2}+\frac{20}{3} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-15y+40-3y=10
6, -\frac{5y}{2}+\frac{20}{3} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-18y+40=10
-15y, -3y എന്നതിൽ ചേർക്കുക.
-18y=-30
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 40 കുറയ്ക്കുക.
y=\frac{5}{3}
ഇരുവശങ്ങളെയും -18 കൊണ്ട് ഹരിക്കുക.
x=-2.5\times \frac{5}{3}+\frac{20}{3}
x=-2.5y+\frac{20}{3} എന്നതിലെ y എന്നതിനായി \frac{5}{3} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=-\frac{25}{6}+\frac{20}{3}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് -2.5, \frac{5}{3} എന്നിവ തമ്മിൽ ഗുണിക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=\frac{5}{2}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{20}{3} എന്നത് -\frac{25}{6} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=\frac{5}{2},y=\frac{5}{3}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
1.2x+3y=8,6x-3y=10
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}1.2&3\\6&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\10\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}1.2&3\\6&-3\end{matrix}\right))\left(\begin{matrix}1.2&3\\6&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1.2&3\\6&-3\end{matrix}\right))\left(\begin{matrix}8\\10\end{matrix}\right)
\left(\begin{matrix}1.2&3\\6&-3\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1.2&3\\6&-3\end{matrix}\right))\left(\begin{matrix}8\\10\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1.2&3\\6&-3\end{matrix}\right))\left(\begin{matrix}8\\10\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{1.2\left(-3\right)-3\times 6}&-\frac{3}{1.2\left(-3\right)-3\times 6}\\-\frac{6}{1.2\left(-3\right)-3\times 6}&\frac{1.2}{1.2\left(-3\right)-3\times 6}\end{matrix}\right)\left(\begin{matrix}8\\10\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{36}&\frac{5}{36}\\\frac{5}{18}&-\frac{1}{18}\end{matrix}\right)\left(\begin{matrix}8\\10\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{36}\times 8+\frac{5}{36}\times 10\\\frac{5}{18}\times 8-\frac{1}{18}\times 10\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2.5\\\frac{5}{3}\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=2.5,y=\frac{5}{3}
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
1.2x+3y=8,6x-3y=10
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
6\times 1.2x+6\times 3y=6\times 8,1.2\times 6x+1.2\left(-3\right)y=1.2\times 10
\frac{6x}{5}, 6x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 6 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 1.2 കൊണ്ടും ഗുണിക്കുക.
7.2x+18y=48,7.2x-3.6y=12
ലഘൂകരിക്കുക.
7.2x-7.2x+18y+3.6y=48-12
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 7.2x+18y=48 എന്നതിൽ നിന്ന് 7.2x-3.6y=12 കുറയ്ക്കുക.
18y+3.6y=48-12
\frac{36x}{5}, -\frac{36x}{5} എന്നതിൽ ചേർക്കുക. \frac{36x}{5}, -\frac{36x}{5} എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
21.6y=48-12
18y, \frac{18y}{5} എന്നതിൽ ചേർക്കുക.
21.6y=36
48, -12 എന്നതിൽ ചേർക്കുക.
y=\frac{5}{3}
21.6 കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്‍റെ പരസ്പരപൂരകത്തിന്‍റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
6x-3\times \frac{5}{3}=10
6x-3y=10 എന്നതിലെ y എന്നതിനായി \frac{5}{3} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
6x-5=10
-3, \frac{5}{3} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
6x=15
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 5 ചേർക്കുക.
x=\frac{5}{2}
ഇരുവശങ്ങളെയും 6 കൊണ്ട് ഹരിക്കുക.
x=\frac{5}{2},y=\frac{5}{3}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.