പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

-6x+21y=-24,6x-4y=24
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-6x+21y=-24
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
-6x=-21y-24
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 21y കുറയ്ക്കുക.
x=-\frac{1}{6}\left(-21y-24\right)
ഇരുവശങ്ങളെയും -6 കൊണ്ട് ഹരിക്കുക.
x=\frac{7}{2}y+4
-\frac{1}{6}, -21y-24 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
6\left(\frac{7}{2}y+4\right)-4y=24
6x-4y=24 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി \frac{7y}{2}+4 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
21y+24-4y=24
6, \frac{7y}{2}+4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
17y+24=24
21y, -4y എന്നതിൽ ചേർക്കുക.
17y=0
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 24 കുറയ്ക്കുക.
y=0
ഇരുവശങ്ങളെയും 17 കൊണ്ട് ഹരിക്കുക.
x=4
x=\frac{7}{2}y+4 എന്നതിലെ y എന്നതിനായി 0 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=4,y=0
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
-6x+21y=-24,6x-4y=24
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}-6&21\\6&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-24\\24\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}-6&21\\6&-4\end{matrix}\right))\left(\begin{matrix}-6&21\\6&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&21\\6&-4\end{matrix}\right))\left(\begin{matrix}-24\\24\end{matrix}\right)
\left(\begin{matrix}-6&21\\6&-4\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&21\\6&-4\end{matrix}\right))\left(\begin{matrix}-24\\24\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&21\\6&-4\end{matrix}\right))\left(\begin{matrix}-24\\24\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{-6\left(-4\right)-21\times 6}&-\frac{21}{-6\left(-4\right)-21\times 6}\\-\frac{6}{-6\left(-4\right)-21\times 6}&-\frac{6}{-6\left(-4\right)-21\times 6}\end{matrix}\right)\left(\begin{matrix}-24\\24\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{51}&\frac{7}{34}\\\frac{1}{17}&\frac{1}{17}\end{matrix}\right)\left(\begin{matrix}-24\\24\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{51}\left(-24\right)+\frac{7}{34}\times 24\\\frac{1}{17}\left(-24\right)+\frac{1}{17}\times 24\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\0\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=4,y=0
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
-6x+21y=-24,6x-4y=24
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
6\left(-6\right)x+6\times 21y=6\left(-24\right),-6\times 6x-6\left(-4\right)y=-6\times 24
-6x, 6x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 6 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും -6 കൊണ്ടും ഗുണിക്കുക.
-36x+126y=-144,-36x+24y=-144
ലഘൂകരിക്കുക.
-36x+36x+126y-24y=-144+144
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് -36x+126y=-144 എന്നതിൽ നിന്ന് -36x+24y=-144 കുറയ്ക്കുക.
126y-24y=-144+144
-36x, 36x എന്നതിൽ ചേർക്കുക. -36x, 36x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
102y=-144+144
126y, -24y എന്നതിൽ ചേർക്കുക.
102y=0
-144, 144 എന്നതിൽ ചേർക്കുക.
y=0
ഇരുവശങ്ങളെയും 102 കൊണ്ട് ഹരിക്കുക.
6x=24
6x-4y=24 എന്നതിലെ y എന്നതിനായി 0 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=4
ഇരുവശങ്ങളെയും 6 കൊണ്ട് ഹരിക്കുക.
x=4,y=0
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.