പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
y, x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

y-2x=-4
ആദ്യ സമവാക്യം പരിഗണിക്കുക. ഇരുവശങ്ങളിൽ നിന്നും 2x കുറയ്ക്കുക.
y-4x=-2
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. ഇരുവശങ്ങളിൽ നിന്നും 4x കുറയ്ക്കുക.
y-2x=-4,y-4x=-2
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
y-2x=-4
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള y മാറ്റിനിർത്തിക്കൊണ്ട് y എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
y=2x-4
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 2x ചേർക്കുക.
2x-4-4x=-2
y-4x=-2 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ y എന്നതിനായി -4+2x സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-2x-4=-2
2x, -4x എന്നതിൽ ചേർക്കുക.
-2x=2
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 4 ചേർക്കുക.
x=-1
ഇരുവശങ്ങളെയും -2 കൊണ്ട് ഹരിക്കുക.
y=2\left(-1\right)-4
y=2x-4 എന്നതിലെ x എന്നതിനായി -1 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് y എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
y=-2-4
2, -1 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
y=-6
-4, -2 എന്നതിൽ ചേർക്കുക.
y=-6,x=-1
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
y-2x=-4
ആദ്യ സമവാക്യം പരിഗണിക്കുക. ഇരുവശങ്ങളിൽ നിന്നും 2x കുറയ്ക്കുക.
y-4x=-2
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. ഇരുവശങ്ങളിൽ നിന്നും 4x കുറയ്ക്കുക.
y-2x=-4,y-4x=-2
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}1&-2\\1&-4\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-4\\-2\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}1&-2\\1&-4\end{matrix}\right))\left(\begin{matrix}1&-2\\1&-4\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&-4\end{matrix}\right))\left(\begin{matrix}-4\\-2\end{matrix}\right)
\left(\begin{matrix}1&-2\\1&-4\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&-4\end{matrix}\right))\left(\begin{matrix}-4\\-2\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&-4\end{matrix}\right))\left(\begin{matrix}-4\\-2\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{-4-\left(-2\right)}&-\frac{-2}{-4-\left(-2\right)}\\-\frac{1}{-4-\left(-2\right)}&\frac{1}{-4-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-4\\-2\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2&-1\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-4\\-2\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2\left(-4\right)-\left(-2\right)\\\frac{1}{2}\left(-4\right)-\frac{1}{2}\left(-2\right)\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-6\\-1\end{matrix}\right)
ഗണിതം ചെയ്യുക.
y=-6,x=-1
y, x എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
y-2x=-4
ആദ്യ സമവാക്യം പരിഗണിക്കുക. ഇരുവശങ്ങളിൽ നിന്നും 2x കുറയ്ക്കുക.
y-4x=-2
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. ഇരുവശങ്ങളിൽ നിന്നും 4x കുറയ്ക്കുക.
y-2x=-4,y-4x=-2
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
y-y-2x+4x=-4+2
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് y-2x=-4 എന്നതിൽ നിന്ന് y-4x=-2 കുറയ്ക്കുക.
-2x+4x=-4+2
y, -y എന്നതിൽ ചേർക്കുക. y, -y എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
2x=-4+2
-2x, 4x എന്നതിൽ ചേർക്കുക.
2x=-2
-4, 2 എന്നതിൽ ചേർക്കുക.
x=-1
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
y-4\left(-1\right)=-2
y-4x=-2 എന്നതിലെ x എന്നതിനായി -1 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് y എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
y+4=-2
-4, -1 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
y=-6
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 4 കുറയ്ക്കുക.
y=-6,x=-1
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.