പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
y, x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

y+6x=2
ആദ്യ സമവാക്യം പരിഗണിക്കുക. 6x ഇരു വശങ്ങളിലും ചേർക്കുക.
y+x=-3
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. x ഇരു വശങ്ങളിലും ചേർക്കുക.
y+6x=2,y+x=-3
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
y+6x=2
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള y മാറ്റിനിർത്തിക്കൊണ്ട് y എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
y=-6x+2
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 6x കുറയ്ക്കുക.
-6x+2+x=-3
y+x=-3 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ y എന്നതിനായി -6x+2 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-5x+2=-3
-6x, x എന്നതിൽ ചേർക്കുക.
-5x=-5
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 2 കുറയ്ക്കുക.
x=1
ഇരുവശങ്ങളെയും -5 കൊണ്ട് ഹരിക്കുക.
y=-6+2
y=-6x+2 എന്നതിലെ x എന്നതിനായി 1 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് y എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
y=-4
2, -6 എന്നതിൽ ചേർക്കുക.
y=-4,x=1
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
y+6x=2
ആദ്യ സമവാക്യം പരിഗണിക്കുക. 6x ഇരു വശങ്ങളിലും ചേർക്കുക.
y+x=-3
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. x ഇരു വശങ്ങളിലും ചേർക്കുക.
y+6x=2,y+x=-3
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}1&6\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2\\-3\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}1&6\\1&1\end{matrix}\right))\left(\begin{matrix}1&6\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&6\\1&1\end{matrix}\right))\left(\begin{matrix}2\\-3\end{matrix}\right)
\left(\begin{matrix}1&6\\1&1\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&6\\1&1\end{matrix}\right))\left(\begin{matrix}2\\-3\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&6\\1&1\end{matrix}\right))\left(\begin{matrix}2\\-3\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-6}&-\frac{6}{1-6}\\-\frac{1}{1-6}&\frac{1}{1-6}\end{matrix}\right)\left(\begin{matrix}2\\-3\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{6}{5}\\\frac{1}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}2\\-3\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\times 2+\frac{6}{5}\left(-3\right)\\\frac{1}{5}\times 2-\frac{1}{5}\left(-3\right)\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-4\\1\end{matrix}\right)
ഗണിതം ചെയ്യുക.
y=-4,x=1
y, x എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
y+6x=2
ആദ്യ സമവാക്യം പരിഗണിക്കുക. 6x ഇരു വശങ്ങളിലും ചേർക്കുക.
y+x=-3
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. x ഇരു വശങ്ങളിലും ചേർക്കുക.
y+6x=2,y+x=-3
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
y-y+6x-x=2+3
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് y+6x=2 എന്നതിൽ നിന്ന് y+x=-3 കുറയ്ക്കുക.
6x-x=2+3
y, -y എന്നതിൽ ചേർക്കുക. y, -y എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
5x=2+3
6x, -x എന്നതിൽ ചേർക്കുക.
5x=5
2, 3 എന്നതിൽ ചേർക്കുക.
x=1
ഇരുവശങ്ങളെയും 5 കൊണ്ട് ഹരിക്കുക.
y+1=-3
y+x=-3 എന്നതിലെ x എന്നതിനായി 1 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് y എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
y=-4
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 1 കുറയ്ക്കുക.
y=-4,x=1
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.