പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
y, x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

y=\frac{1}{2}x+\frac{3}{2}+3
ആദ്യ സമവാക്യം പരിഗണിക്കുക. \frac{1}{2}x+\frac{3}{2} ലഭിക്കാൻ 2 ഉപയോഗിച്ച് x+3 എന്നതിന്‍റെ ഓരോ പദവും വിഭജിക്കുക.
y=\frac{1}{2}x+\frac{9}{2}
\frac{9}{2} ലഭ്യമാക്കാൻ \frac{3}{2}, 3 എന്നിവ ചേർക്കുക.
\frac{1}{2}x+\frac{9}{2}-2x=10
y-2x=10 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ y എന്നതിനായി \frac{9+x}{2} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-\frac{3}{2}x+\frac{9}{2}=10
\frac{x}{2}, -2x എന്നതിൽ ചേർക്കുക.
-\frac{3}{2}x=\frac{11}{2}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{9}{2} കുറയ്ക്കുക.
x=-\frac{11}{3}
-\frac{3}{2} കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്‍റെ പരസ്പരപൂരകത്തിന്‍റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
y=\frac{1}{2}\left(-\frac{11}{3}\right)+\frac{9}{2}
y=\frac{1}{2}x+\frac{9}{2} എന്നതിലെ x എന്നതിനായി -\frac{11}{3} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് y എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
y=-\frac{11}{6}+\frac{9}{2}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് \frac{1}{2}, -\frac{11}{3} എന്നിവ തമ്മിൽ ഗുണിക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
y=\frac{8}{3}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{9}{2} എന്നത് -\frac{11}{6} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
y=\frac{8}{3},x=-\frac{11}{3}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
y=\frac{1}{2}x+\frac{3}{2}+3
ആദ്യ സമവാക്യം പരിഗണിക്കുക. \frac{1}{2}x+\frac{3}{2} ലഭിക്കാൻ 2 ഉപയോഗിച്ച് x+3 എന്നതിന്‍റെ ഓരോ പദവും വിഭജിക്കുക.
y=\frac{1}{2}x+\frac{9}{2}
\frac{9}{2} ലഭ്യമാക്കാൻ \frac{3}{2}, 3 എന്നിവ ചേർക്കുക.
y-\frac{1}{2}x=\frac{9}{2}
ഇരുവശങ്ങളിൽ നിന്നും \frac{1}{2}x കുറയ്ക്കുക.
y-2x=10
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. ഇരുവശങ്ങളിൽ നിന്നും 2x കുറയ്ക്കുക.
y-\frac{1}{2}x=\frac{9}{2},y-2x=10
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}1&-\frac{1}{2}\\1&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{9}{2}\\10\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}1&-\frac{1}{2}\\1&-2\end{matrix}\right))\left(\begin{matrix}1&-\frac{1}{2}\\1&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{2}\\1&-2\end{matrix}\right))\left(\begin{matrix}\frac{9}{2}\\10\end{matrix}\right)
\left(\begin{matrix}1&-\frac{1}{2}\\1&-2\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{2}\\1&-2\end{matrix}\right))\left(\begin{matrix}\frac{9}{2}\\10\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{2}\\1&-2\end{matrix}\right))\left(\begin{matrix}\frac{9}{2}\\10\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-\left(-\frac{1}{2}\right)}&-\frac{-\frac{1}{2}}{-2-\left(-\frac{1}{2}\right)}\\-\frac{1}{-2-\left(-\frac{1}{2}\right)}&\frac{1}{-2-\left(-\frac{1}{2}\right)}\end{matrix}\right)\left(\begin{matrix}\frac{9}{2}\\10\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3}&-\frac{1}{3}\\\frac{2}{3}&-\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}\frac{9}{2}\\10\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3}\times \frac{9}{2}-\frac{1}{3}\times 10\\\frac{2}{3}\times \frac{9}{2}-\frac{2}{3}\times 10\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{8}{3}\\-\frac{11}{3}\end{matrix}\right)
ഗണിതം ചെയ്യുക.
y=\frac{8}{3},x=-\frac{11}{3}
y, x എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
y=\frac{1}{2}x+\frac{3}{2}+3
ആദ്യ സമവാക്യം പരിഗണിക്കുക. \frac{1}{2}x+\frac{3}{2} ലഭിക്കാൻ 2 ഉപയോഗിച്ച് x+3 എന്നതിന്‍റെ ഓരോ പദവും വിഭജിക്കുക.
y=\frac{1}{2}x+\frac{9}{2}
\frac{9}{2} ലഭ്യമാക്കാൻ \frac{3}{2}, 3 എന്നിവ ചേർക്കുക.
y-\frac{1}{2}x=\frac{9}{2}
ഇരുവശങ്ങളിൽ നിന്നും \frac{1}{2}x കുറയ്ക്കുക.
y-2x=10
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. ഇരുവശങ്ങളിൽ നിന്നും 2x കുറയ്ക്കുക.
y-\frac{1}{2}x=\frac{9}{2},y-2x=10
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
y-y-\frac{1}{2}x+2x=\frac{9}{2}-10
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് y-\frac{1}{2}x=\frac{9}{2} എന്നതിൽ നിന്ന് y-2x=10 കുറയ്ക്കുക.
-\frac{1}{2}x+2x=\frac{9}{2}-10
y, -y എന്നതിൽ ചേർക്കുക. y, -y എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
\frac{3}{2}x=\frac{9}{2}-10
-\frac{x}{2}, 2x എന്നതിൽ ചേർക്കുക.
\frac{3}{2}x=-\frac{11}{2}
\frac{9}{2}, -10 എന്നതിൽ ചേർക്കുക.
x=-\frac{11}{3}
\frac{3}{2} കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്‍റെ പരസ്പരപൂരകത്തിന്‍റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
y-2\left(-\frac{11}{3}\right)=10
y-2x=10 എന്നതിലെ x എന്നതിനായി -\frac{11}{3} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് y എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
y+\frac{22}{3}=10
-2, -\frac{11}{3} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
y=\frac{8}{3}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{22}{3} കുറയ്ക്കുക.
y=\frac{8}{3},x=-\frac{11}{3}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.