പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
y, x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

y+x+3=9,2y-x-5=15
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
y+x+3=9
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള y മാറ്റിനിർത്തിക്കൊണ്ട് y എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
y+x=6
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 3 കുറയ്ക്കുക.
y=-x+6
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും x കുറയ്ക്കുക.
2\left(-x+6\right)-x-5=15
2y-x-5=15 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ y എന്നതിനായി -x+6 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-2x+12-x-5=15
2, -x+6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-3x+12-5=15
-2x, -x എന്നതിൽ ചേർക്കുക.
-3x+7=15
12, -5 എന്നതിൽ ചേർക്കുക.
-3x=8
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 7 കുറയ്ക്കുക.
x=-\frac{8}{3}
ഇരുവശങ്ങളെയും -3 കൊണ്ട് ഹരിക്കുക.
y=-\left(-\frac{8}{3}\right)+6
y=-x+6 എന്നതിലെ x എന്നതിനായി -\frac{8}{3} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് y എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
y=\frac{8}{3}+6
-1, -\frac{8}{3} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
y=\frac{26}{3}
6, \frac{8}{3} എന്നതിൽ ചേർക്കുക.
y=\frac{26}{3},x=-\frac{8}{3}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
y+x+3=9,2y-x-5=15
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}1&1\\2&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}6\\20\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}1&1\\2&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}6\\20\end{matrix}\right)
\left(\begin{matrix}1&1\\2&-1\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}6\\20\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}6\\20\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-2}&-\frac{1}{-1-2}\\-\frac{2}{-1-2}&\frac{1}{-1-2}\end{matrix}\right)\left(\begin{matrix}6\\20\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\\frac{2}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}6\\20\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 6+\frac{1}{3}\times 20\\\frac{2}{3}\times 6-\frac{1}{3}\times 20\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{26}{3}\\-\frac{8}{3}\end{matrix}\right)
ഗണിതം ചെയ്യുക.
y=\frac{26}{3},x=-\frac{8}{3}
y, x എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
y+x+3=9,2y-x-5=15
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
2y+2x+2\times 3=2\times 9,2y-x-5=15
y, 2y എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 2 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 1 കൊണ്ടും ഗുണിക്കുക.
2y+2x+6=18,2y-x-5=15
ലഘൂകരിക്കുക.
2y-2y+2x+x+6+5=18-15
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 2y+2x+6=18 എന്നതിൽ നിന്ന് 2y-x-5=15 കുറയ്ക്കുക.
2x+x+6+5=18-15
2y, -2y എന്നതിൽ ചേർക്കുക. 2y, -2y എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
3x+6+5=18-15
2x, x എന്നതിൽ ചേർക്കുക.
3x+11=18-15
6, 5 എന്നതിൽ ചേർക്കുക.
3x+11=3
18, -15 എന്നതിൽ ചേർക്കുക.
3x=-8
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 11 കുറയ്ക്കുക.
x=-\frac{8}{3}
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
2y-\left(-\frac{8}{3}\right)-5=15
2y-x-5=15 എന്നതിലെ x എന്നതിനായി -\frac{8}{3} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് y എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
2y-\frac{7}{3}=15
\frac{8}{3}, -5 എന്നതിൽ ചേർക്കുക.
2y=\frac{52}{3}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{7}{3} ചേർക്കുക.
y=\frac{26}{3}
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
y=\frac{26}{3},x=-\frac{8}{3}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.