പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

x+y=5,5x+y=4
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x+y=5
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
x=-y+5
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും y കുറയ്ക്കുക.
5\left(-y+5\right)+y=4
5x+y=4 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി -y+5 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-5y+25+y=4
5, -y+5 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-4y+25=4
-5y, y എന്നതിൽ ചേർക്കുക.
-4y=-21
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 25 കുറയ്ക്കുക.
y=\frac{21}{4}
ഇരുവശങ്ങളെയും -4 കൊണ്ട് ഹരിക്കുക.
x=-\frac{21}{4}+5
x=-y+5 എന്നതിലെ y എന്നതിനായി \frac{21}{4} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=-\frac{1}{4}
5, -\frac{21}{4} എന്നതിൽ ചേർക്കുക.
x=-\frac{1}{4},y=\frac{21}{4}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
x+y=5,5x+y=4
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}1&1\\5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\4\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}1&1\\5&1\end{matrix}\right))\left(\begin{matrix}1&1\\5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&1\end{matrix}\right))\left(\begin{matrix}5\\4\end{matrix}\right)
\left(\begin{matrix}1&1\\5&1\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&1\end{matrix}\right))\left(\begin{matrix}5\\4\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&1\end{matrix}\right))\left(\begin{matrix}5\\4\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-5}&-\frac{1}{1-5}\\-\frac{5}{1-5}&\frac{1}{1-5}\end{matrix}\right)\left(\begin{matrix}5\\4\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{1}{4}\\\frac{5}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}5\\4\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 5+\frac{1}{4}\times 4\\\frac{5}{4}\times 5-\frac{1}{4}\times 4\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\\\frac{21}{4}\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=-\frac{1}{4},y=\frac{21}{4}
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
x+y=5,5x+y=4
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
x-5x+y-y=5-4
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് x+y=5 എന്നതിൽ നിന്ന് 5x+y=4 കുറയ്ക്കുക.
x-5x=5-4
y, -y എന്നതിൽ ചേർക്കുക. y, -y എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
-4x=5-4
x, -5x എന്നതിൽ ചേർക്കുക.
-4x=1
5, -4 എന്നതിൽ ചേർക്കുക.
x=-\frac{1}{4}
ഇരുവശങ്ങളെയും -4 കൊണ്ട് ഹരിക്കുക.
5\left(-\frac{1}{4}\right)+y=4
5x+y=4 എന്നതിലെ x എന്നതിനായി -\frac{1}{4} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് y എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
-\frac{5}{4}+y=4
5, -\frac{1}{4} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
y=\frac{21}{4}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{5}{4} ചേർക്കുക.
x=-\frac{1}{4},y=\frac{21}{4}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.